Equilibrium

- · Some reactions go to completion
 - Reactants form products
 - No reactants left (unless in excess)
 - e.g. Na₂CO_{3(aq)} + 2HCl(aq) 2NaCl(aq) + H₂O(l) + CO₂(g)
- Some reactions never reach completion
 - At equilibrium reactant and product concentration remains constant indefinitely
 - Must be a closed system where reactants and products cannot escape but energy can be transferred to and from the system.
 e.g. CH₃COOH(aq) CH₃COO⁻(aq) + H⁺(aq)
 - Rate of forward reaction is equal to the rate of the reverse reaction

Equilibrium Constant

- Every equilibrium can be described by an equilibrium constant (K)
- Equilibrium constant (K) characterises the equilibrium composition of the reaction mixture
 - High K (above 1) higher % of products in equilibrium mixture
 - Low K (below 1) lower % of products in equilibrium mixture
- K is measured in terms of the concentration of species at equilibrium (or in terms of partial pressures in gas equilibrium)

For the reaction
$$aA + bB \iff cC + dD$$

$$K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

A, B, C & D are chemical formulae

a, b, c & d are stoichiometric coefficients (numbers in equation)

- Homogeneous equilibrium is when all species are in the same state
- Heterogeneous equilibrium have species are in more than one state
- Equilibrium constant K has no units
- Equilibrium constant K is independent of the particular concentrations or pressures of species in a given reaction
- When a pure solid is present in an equation or a liquid is present as a solvent, its concentration, at a given temperature, doesn't vary to a measurable extent.
 - It is given the value of 1 in equilibrium equations (due to activity)

Effect of Changing Concentration

For example:

Dilute ethanoic acid has a pH=3.0 but adding a spatula of sodium ethanoate raises pH to 3.5

$$CH_3COOH(aq)$$
 \longrightarrow $CH_3COO^-(aq) + H^*(aq)$
 $CH_3COONa(s)$ \longrightarrow $CH_3COO^-(aq) + Na^*(aq)$

- CH₃COO⁻Na⁺ fully ionises on solution
- pH rises as [H⁺] falls
 - H⁺ ions react with the increased concentration of CH₃COO⁻ ions to form molecules of CH₃COOH
 - Position of equilibrium shifts to LEFT but value of K remains constant

$$CH_3COOH(aq)$$
 $CH_3COO^-(aq) + H^*(aq)$

$$K = \frac{[CH_3COO^-] \times [H^*]}{[CH_3COOH]}$$

- increase in [CH₃COO⁻] is balanced by decrease in [H⁺]
 increase in [CH₃COOH]
- Value of K remains constant by a combination of these changes
- The value of K remains constant (at the same temperature) as the equilibrium position shifts which results in changes in the concentrations of the species in the reaction
- Le Chatelier's Principle: "When a reaction at equilibrium is subjected to change, the composition alters in such a way as to minimise the effects of the change."

The Effects of Changing Temperature

- From colour changes, relative concentrations of N_2O_4 and NO_2 have changed with temperature changes
- · Value of K has changed
- · Value of K is dependant on temperature
- Values of K constants are quoted at particular temperatures

$$N_2O_4(g)$$
 $\stackrel{endothermic}{\sim}$ $2NO_2(g)$ $\Delta H= +ve$

$$K = \frac{[NO_2]^2}{[N_2O_4]}$$

- When temperature 20°C is lowered to 0°C
 - More N₂O₄ is formed (as exothermic reaction is favoured)
 - o Brown colour (from NO₂) fades

$$K = \frac{\sqrt{[NO_2]^2}}{\sqrt{[N_2O_4]}} = decrease in value of K$$

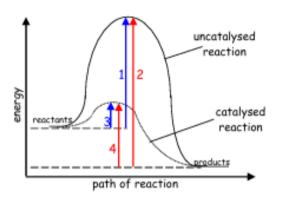
- When temperature 20°C is raised to 80°C
 - More NO₂ is formed (as endothermic reaction is favoured)
 - o Brown colour darkens (from more NO₂ produced)

$$K = \frac{1}{\sqrt{[N_2O_4]}} = increase in value of K$$

The Effects of Changing Temperature

For endothermic reactions

Increase in temperature increase in equilibrium constant K


increase in product yield

For exothermic reactions

Increase in temperature decrease in equilibrium constant K

decrease in product yield

Effect of a Catalyst

- 1 Ea for forward uncatalysed reaction
- 2 Ea for reverse uncatalysed reaction
- 3 Ea for forward catalysed reaction
- 4 Ea for reverse catalysed reaction
- Catalysts lower activation energy E_{α} for both forward and reverse reactions by the same amount
- No change in the equilibrium concentration so position of equilibrium unchanged
- Equilibrium constant K is unaltered (at the same temperature)
- · Catalysts speed up rate at which equilibrium is established

Equilibrium Constant K and Position of Equilibrium

- Value of K gives indication of how far equilibrium lies to the left or the right of a chemical reaction
 - High K means more products in the equilibrium mixture
 - o Low K means more reactants in the equilibrium mixture
- K gives no indication about the rate at which dynamic equilibrium is established
- Catalysts do not increase percentage conversion of reactants to products
 - o Catalysts only affect the speed at which equilibrium is attained
- For example

System	Value of K	Position of Equilibrium
$Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]$	1.7 × 10 ⁷	K >> 1 Equilibrium lies to right (more products at equilibrium)
CH₃COOH = CH₃COO⁻ + H⁺	1.8 × 10 ⁻⁵	K << 1 Equilibrium lies to left (more reactants at equilibrium)
N ₂ O ₄ ===== 2NO ₂	0.87 at 55°C	K ~ 1 Equilibrium lies neither to left or right (similar amounts of reactants and products at equilibrium)