
Acid/Base Equilibria

- Acids produce H⁺ ions in solutions and bases produce OH⁻ ions in solution
- Neutralisation: H^{*}(aq) + OH⁻(aq) → H₂O(l)
- however
 - HCl gas has no H* ions but can neutralise alkalis
 - NH₃ gas can neutralise acid but contains no OH⁻ ions
- The H⁺ ion can be written as follows

 H^{*}(aq) is the shorthand form and is often used in stoichiometric and equilibrium equations, despite being an inaccurate representation of the chemical.

Bronsted & Lowry Definitions

- An acid is any substance capable of donating a proton (H⁺)
- A base is any substance capable of accepting a proton (H⁺)
- For every acid, there is a conjugate base formed by the loss of a proton (H⁺)
- For every base, there is a conjugate acid formed by the gaining of a proton (H⁺)

	Acid		Base		Conjugate Base		Conjugate Acid
1.	<u>HCl</u>	+	H₂O	<u> </u>	Cl ⁻	+	H₃O⁺
2.	СН₃СООН	+	H₂O	<u> </u>	CH₃COO⁻	+	H₃O⁺
3.	H₂O	+	NH₃	$\;\; \Longrightarrow \;\;$	OH-	+	NH_4
4.	H₂O	+	CH₃COO⁻		OH⁻	+	сн₃соон

- Water can be described as amphoteric since it acts as
 - Proton acceptor (examples 1 & 2)
 - Proton donor (examples 3 & 4)

Dissociation of Water

• Water can dissociate as the following equation shows:

$$H_2O(l) + H_2O(l) = H_3O^*(aq) + OH^*(aq)$$

acid base conjugate acid conjugate base
(accepts proton) (donated proton)

• The equilibrium constant K for the dissociation of water is:

$$K = \frac{[H_3O^*] \times [OH^-]}{[H_2O]^2}$$

But $[H_2O] = 1$ as water is the solvent in the equation

Ionic Product
$$K_w = [H_3O^*] \times [OH^-] = 1 \times 10^{-14} \text{ mol}^2 l^{-2} \text{ at } 25^{\circ}C$$

In pure water

$$H^{+}(aq) + OH^{-}(aq) = H_{2}O(l)$$
 $K_{w} = [H^{+}][OH^{-}] = 1\times10^{-14}$

- For every H⁺ ion produced, there is an equal number of OH⁻ ions produced
- $[H^*] = [OH^-] = 10^{-7} \text{ mol } l^{-1} \text{ in pure water at } 25^{\circ}C$
- The Ionic Product K_w varies with temperature

- forward reaction is endothermic (bond breaking)
- o increase in temperature favours the endothermic reaction
- equilibrium moves to RHS more dissociation i.e. (H¹) and (OH⁻)
- Kw is temperature dependent

Temperature (°C)	Ionic Product Kw
18	0.6 x 10 ⁻¹⁴
25	1 × 10 ⁻¹⁴
40	2.9 x 10 ⁻¹⁴
75	16.9 × 10 ⁻¹⁴

 Increase in Temperature increases the K_w and increases the dissociation.

The pH Scale

e.g. pure water
$$[H^*] = 10^{-7} \text{ mol } l^{-1}$$
 pH = 7

1M HCl
$$[H^*] = 1 \text{ mol } l^{-1} = 10^0$$
 pH = 0

0.2M HCl
$$[H^*] = 2 \times 10^{-1} \text{ mol } l^{-1}$$

 $log_{10} [H^*] = -0.7$
 $-log_{10} [H^*] = 0.7$ pH = 0.7

For calculations involving strong acids and strong alkalis, it is assumed that they are 100% dissociated and the number of H * ions in the water can be ignored.

Questions

- 1. Calculate the pH of the following solutions
 - a) 0.35 mol l-1 HNO₃
 - b) 0.14 mol l-1 H2SO4
 - c) 0.78 mol l-1 NaOH

Strong & Weak Acids

a) Strong Acids

Strong acids are acids which fully ionise to release H* ions

e.g. $HCl(g) \xrightarrow{(aq)} H^{+}(aq) + Cl^{-}(aq)$

Strong Acid	hydrochloric acid	sulphuric acid	nitric acid
Formula	HCI	H₂SO ₄	HNO₃

· Strong acids fully dissociate into ions

b) Weak Acids

Weak acids do not fully dissociate in water

- Only partial dissociation of H⁺ ions from parent molecule
- i) Ethanoic Acid (and other alkanoic acids)

ii) Sulphur Dioxide Solution

Sulphur Dioxide dissolves in water to form the weak acid sulphurous acid

$$5O_2 + H_2O \longrightarrow H_2SO_3$$

H₂SO₃
$$\Longrightarrow$$
 2H⁺ + SO₃²⁻
sulphurous acid molecule hydrogen ion sulphite ion
(mainly molecules) (few ions)

iii) Carbon Dioxide Solution

Carbon Dioxide dissolves in water to form the weak acid carbonic acid

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

iv) Other Weak Acids

- Phosphoric acid (H₃PO₄)
- · Citric acid found in citrus fruits

Strong & Weak Alkalis

a) Strong Alkalis

Strong alkalis are alkalis which fully ionise to release OH- ions

e.g. NaOH(s) (aq) + OH⁻(aq)

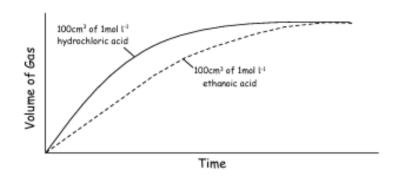
Strong Alkali sodium hydroxide potassium hydroxide lithium hydroxide

Formula NaOH KOH LiOH

Strong alkalis fully dissociate into ions

b) <u>Weak Alkalis</u>

Weak alkalis partially dissociate to release a few OH- ions e.g. ammonia solution (ammonium hydroxide)


· Ammonia is slightly soluble in water

a) Comparing Hydrochloric Acid and Ethanoic Acid

- Strong acids have 100% of the H^{*} ions available to react at all times
- Weak acids have only a small proportion of the H⁺ ions present at any time
 - CH₃COOH H⁺ + CH₃COO⁻
- As the H⁺ ions react with another chemical, they are removed from the equilibrium
 - o concentration of product is reduced
 - equilibrium shifts to RIGHT to replace removed H⁺ ions
 - more molecules of CH₃COOH dissociate to replace removed H* ions
 - CH₃COOH molecules will continue to dissociate to replace H⁺ ions as they continue to be removed by reacting.

Property	Reaction with 100cm³ of 1 mol l ⁻¹ hydrochloric acid	Reaction with 100cm ³ of 1 mol I ⁻¹ ethanoic acid	
Degree of Dissociation	Full	Partial	
Туре	Strong	Weak	
рН	0	4	
Acidity	Higher	Lower	
Electrical Conductivity	High due to many ions	Low due to few ions	
Moles of alkali required for complete neutralisation	Same	Same	
Rate of Reaction with 10g calcium carbonate	Faster	Slower	
Reaction with 10g calcium carbonate	Same volume of gas	Same volume of gas	

Reaction of acid with 10g of chalk

Same volume and concentration of strong and weak acid will

- neutralise the same volume of alkali
- · give off the same volume of gas with excess chalk

NB: HCl and CH3COOH both release one Ht ion

- they are both described as monoprotic
- they both have a power p=1 in volumetric calculations

$$V_{acid} \times C_{acid} \times P_{acid} = V_{alkali} \times C_{alkali} \times P_{alkali}$$

- Care must be taken when comparing any acid to sulphuric acid H₂SO₄
 - H₂SO₄ fully dissociates to release 2H^{*} ions per molecule
 - H₂SO₄ is a diprotic acid (power p=2)
 - 50cm³ of 1 mol l⁻¹ H₂SO₄ has the same neutralising ability as 100cm³ of 1mol l⁻¹ hydrochloric acid or ethanoic acid.

b) Comparing Sodium Hydroxide and Ammonium Hydroxide

Alkali	Туре	Dissociation	pН	Conductivity	Rate of Reaction	Volume of acid neutralised
Sodium Hydroxide	strong	full	higher	higher	faster	
Ammonium Hydroxide (ammonia solution)	weak	partial	lower	lower	slower	same

pH of Salts

Not all salts are pH neutral when dissolved in water.

Salts are made when the H⁺ ion in an acid is replaced by a metal ion (or an ammonium ion) from a base/alkali.

There are 4 combinations of strong/weak acids and strong/weak alkalis:

Acid in Salt Alkali in Salt		Example of Salt	pH of Salt in Water		
Strong	Strong	Strong sodium chloride potassium sulphate		neutral	
Weak	Strong	sodium ethanoate potassium carbonate	pH > 7	Alkaline	
Strong	Weak	ammonium chloride ammonium nitrate	pH < 7	Acidic	
Weak	Weak	ammonium ethanoate ammonium carbonate	This is no until Un	t covered liversity	

a) Salt from Strong Acid v Strong Alkali

Salts from strong acid v strong alkali neutralisation are pH=7 neutral.

· There are no weak ions from strong acids and strong alkalis

b) Salt from Weak Acid v Strong Alkali

Salts from weak acid v strong alkali neutralisations are alkaline pH>7 e.g. sodium ethanoate

 Sodium ethanoate is the salt from a sodium hydroxide v ethanoic acid neutralisation reaction.

a) H+ ions in water and	dissolved CH3COO- ions join up to make molecules of CH3C	OOH by the
following equilibrium:	H+ CH3COO ← CH3COOH	
	(few lant) (mainly malecules)	
b) H⁺ ions are removed	from water and equilibrium in water shifts to replace the	removed H⁺
ions:	H2O ===== H+ + OH-	

- c) As H2O molecules splits into equal numbers of H+ ions and OH- ions
 - H⁺ ion concentration remains constant as the H⁺ ions join up with further CH₃COO⁻ ions
 - concentration of OH⁻ ions increases
 - [OH⁻] > [H⁺] ∴ alkaline pH>7

pH of Salts

Not all salts are pH neutral when dissolved in water.

Salts are made when the H⁺ ion in an acid is replaced by a metal ion (or an ammonium ion) from a base/alkali.

There are 4 combinations of strong/weak acids and strong/weak alkalis:

Acid in Salt Alkali in Salt		Example of Salt	pH of Salt in Water		
Strong	Strong	Strong sodium chloride potassium sulphate		neutral	
Weak	Strong	sodium ethanoate potassium carbonate	pH > 7	Alkaline	
Strong	Weak	ammonium chloride ammonium nitrate	pH < 7	Acidic	
Weak	Weak	ammonium ethanoate ammonium carbonate	This is no until Un	t covered liversity	

a) Salt from Strong Acid v Strong Alkali

Salts from strong acid v strong alkali neutralisation are pH=7 neutral.

· There are no weak ions from strong acids and strong alkalis

b) Salt from Weak Acid v Strong Alkali

Salts from weak acid v strong alkali neutralisations are alkaline pH>7 e.g. sodium ethanoate

 Sodium ethanoate is the salt from a sodium hydroxide v ethanoic acid neutralisation reaction.

a) H+ ions in water and	dissolved CH3COO- ions join up to make molecules of CH3C	OOH by the
following equilibrium:	H+ CH3COO ← CH3COOH	
	(few lant) (mainly malecules)	
b) H⁺ ions are removed	from water and equilibrium in water shifts to replace the	removed H⁺
ions:	H2O ===== H+ + OH-	

- c) As H2O molecules splits into equal numbers of H+ ions and OH- ions
 - H⁺ ion concentration remains constant as the H⁺ ions join up with further CH₃COO⁻ ions
 - concentration of OH⁻ ions increases
 - [OH⁻] > [H⁺] ∴ alkaline pH>7

Dissociation of Acids

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^{+}(aq) + A^{-}(aq)$$

acid base conjugate acid conjugate base
(accepts proton) (donated proton)

$$K_a = \frac{[H_3O^+] \times [A^-]}{[HA]}$$
NB: H2O omitted as [H2O] = 1

- K_a is a measure of the strength of the acid
- The dissociation constant of an acid can be represented by pKa
 - where pK_a = -log₁₀ K_a
- For strong acids equilibrium lies to the RIGHT
 - Effectively complete dissociation
 - K_a has little meaning for strong acids
- For weak acids equilibrium lies to the LEFT
 - Little dissociation e.g. less than 5% dissociation
 - K_a is a measure of the degree of dissociation
 - The smaller the K_a value, the weaker the acid

Calculation of pH of a Weak Monobasic Acid

There is an equation to calculate the pH of a weak acid from its pK_a value and its concentration

$$K_{a} = \frac{[H_{3}O^{+}] \times [A^{-}]}{[HA]}$$

$$= \frac{[H_{3}O^{+}]^{2}}{[HA]}$$

$$log_{10}K_{a} = log_{10}[H_{3}O^{+}]^{2} - log_{10}[HA]$$

$$log_{10}K_{a} = 2xlog_{10}[H_{3}O^{+}] - log_{10}[HA]$$

$$log_{10}K_{a} = -2pH - log_{10}[HA]$$

$$-log_{10}K_{a} = 2pH + log_{10}[HA]$$

$$pK_{a} = 2pH + log_{10}[HA]$$

- For weak acid HA of concentration c mol l-1
 - [HA] at equilibrium ~ original concentration c mol l⁻¹

$$pK_a = 2pH + log c$$
 $2pH = pK_a - log c$
 $pH = \frac{1}{2}pK_a - \frac{1}{2}log c$

The equation is only valid for weak acids where the [HA] at equilibrium is almost equal to the original concentration of HA i.e. small degree of dissociation.

- The weaker the acid, the truer the calculated pH will be from the above equation.
 - The stronger the acid, the less accurate the calculated pH will be.