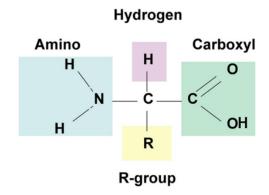
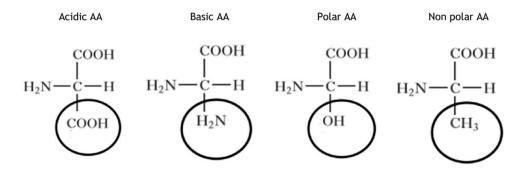

1.2 Amino Acids & Peptide bonds


Proteins

Polymers of amino acid monomers joined by peptide bonds to form polypeptide chains.

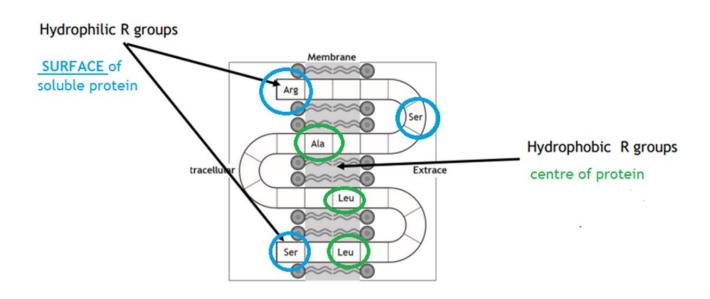
Amino Acid Structure

Amino acids have the same basic structure of a central carbon with a COOH, NH2, H atom & R group.


Amino acids ONLY differ in terms of their R group.

The wide range of functions carried out by proteins results from the diversity of R groups

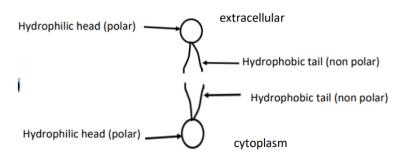
Differences in R groups 1. Size 2. Shape 3. Charge 4. Hydrogen Bonding capacity 5. Chemical reactivity Acidic group COOH H₂N — C — H group R group


1.2 Amino Acid Classification

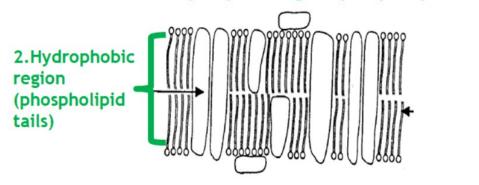
Amino acid classification

Type of Amino Acid	Hydrophilic/Hydrophobic	R group
Basic	Hydrophilic (+ve charge)	NH₃ ⁺ group
Acidic	Hydrophilic (-ve charge)	COO ⁻ group
Polar	Hydrophilic	OH group
Ion Polar Hydrophobic (no charge)		CH₃ group

Location of protein R groups

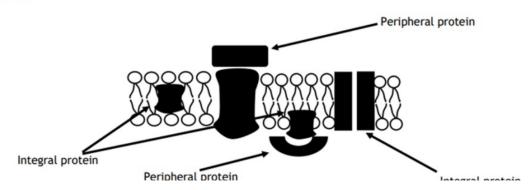

1.2 Integral & Peripheral Proteins

Membrane


The Cell membrane

Phospholipid bilayer

- Hydrophilic head (extracellular/cytoplasm)
- 2. Hydrophobic tail (middle of membrane)



1. Hydrophilic region (phospholipid heads)

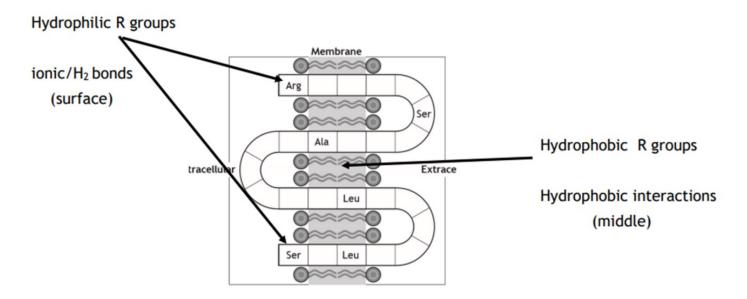
1. Hydrophilic phospholipid heads

Membrane proteins

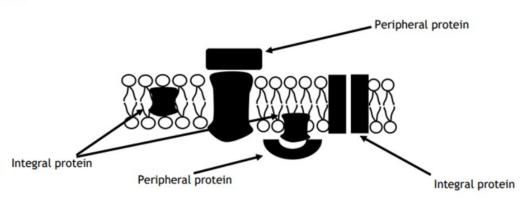
1. Integral proteins

Held **within** the phospholipid bilayer due to regions of **hydrophobic R groups** enabling strong **hydrophobic interactions**

Integral proteins can be transmembrane & contain hydrophilic & hydrophobic R groups.


2. Peripheral proteins

Bound to the surface of membranes due to **hydrophilic R groups** on its **surface** by **ionic/hydrogen** bonds.


Contain many hydrophilic R groups & much fewer hydrophobic R groups.

1.2 Integral & Peripheral Proteins

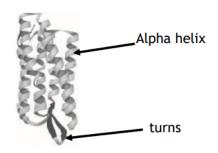
Integral Proteins

Membrane proteins

Type of Membrane protein	Description	Type of R groups on protein	Type of interactions
Integral	Held within the phospholipid bilayer Some are transmembrane	Hydrophobic R groups in middle of protein	Strong hydrophobic interactions
Peripheral	Bound to surface of membrane	Hydrophilic R groups at surface	Ionic or hydrogen bonds

1.2 Protein Structure

Primary Structure


Sequence of amino acids in the polypeptide

Secondary Structure

<u>Hydrogen bonding</u> along the backbone of the protein strand results in secondary structure

Types of Secondary Structure

- 1. Alpha helices
- 2. Beta-pleated sheets (parallel/antiparallel)
- 3. Turns

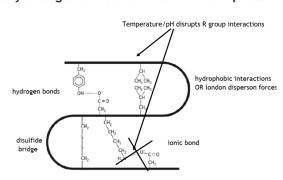
Tertiary Stucture

Folding of polypeptide chain into 3D structure due to interactions between R groups

CH₂ 1. Hydrophobic interactions hydrophobic interactions ćH, ČH, 2. Ionic bonds OR london disperson forces hydrogen bonds 3. London dispersion forces 4. Hydrogen bonds 5. Disulfide bridges (covalent bond between R groups containing Sulfur) ionic bond bridge

Interactions of the R groups (tertiary level) can be influenced by temperature and pH.

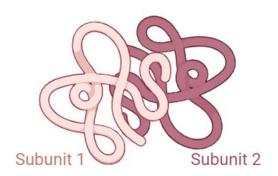
1. Increasing temperature


This disrupts the interactions that hold the protein in shape; the protein begins to unfold, eventually becoming denatured.

2. Altered pH from optimum

As pH increases or decreases from the optimum, ionic interactions between charged

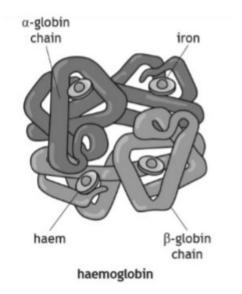
groups are lost, which gradually changes the conformation of the protein until it


becomes denatured

1.2 Protein Structure

Quaternary structure

The <u>spatial arrangement</u> of the <u>subunits</u> in proteins with at least two connected polypeptide subunits



A prosthetic group

A <u>non-protein</u> unit tightly bound to a protein and necessary for its <u>function</u>

Example

Haemoglobin has 4 polypeptide sub-units with a prosthetic iron group required for oxygen binding to haemoglobin sub-units

1.2 Allosteric Proteins

Allosteric Proteins

Allosteric interactions between spatially distinct sites in proteins with multi sub-units.

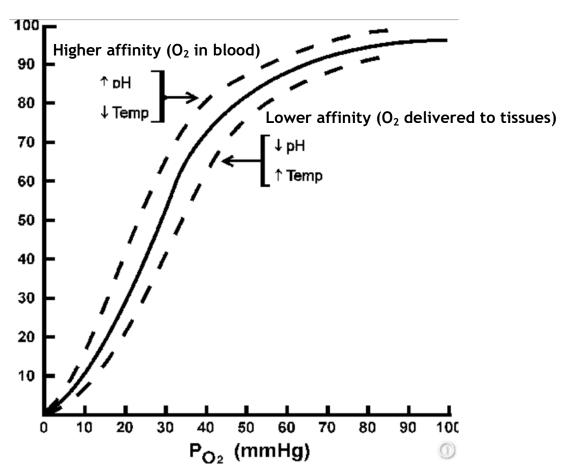
Allosteric proteins show **co-operativity** where by changes in **binding** at **one subunit alters** the **affinity** of the **remaining subunits**.

Example

Irons binds to 1 subunit of haemoglobin which causes a conformational change in the other 3 sub units increasing their affinity to bind iron.

Allosteric Enzymes

The binding of a substrate molecule to one active site of an allosteric enzyme increases the affinity of other active sites for binding of substrate molecules.


The activity of allosteric enzymes can vary greatly with small changes in substrate concentration.

1.2 Allosteric Proteins

Factors lowering affinity of haemoglobin for oxygen (rightward shift on graph)

- 1. Lower pH
- 2. Higher temperature

This promotes increased oxygen delivery to tissues.

