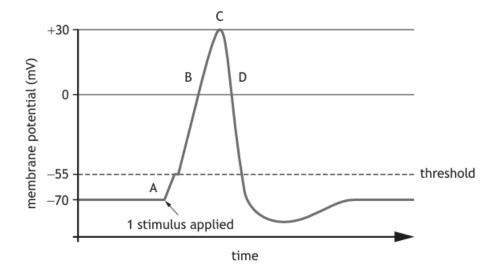

The diagram shows two neurons and a synapse.

The following events occur during the transmission of a nerve impulse from one neuron to the next:


- 1. The neurotransmitter binds to its receptor.
- 2. Voltage-gated sodium channels open and sodium ions diffuse into the cell causing local depolarisation.
- 3. Vesicles containing the neurotransmitter fuse with the membrane.
- 4. Ligand-gated ion channels open.
- 5. The neurotransmitter diffuses across the synaptic cleft.

The correct order of events is

- A 5, 3, 4, 1, 2
- B 3, 5, 1, 4, 2
- C 3, 5, 1, 2, 4
- D 5, 3, 1, 4, 2

2 The diagram shows the changes in membrane potential during the transmission of a nerve impulse.

Which letter represents the time when the voltage-gated potassium ion channels are open?

The list shows some events that occur in the cell membrane of a neuron during nerve transmission.

- 1. Binding of neurotransmitter to neuron
- 2. Closure of voltage-gated ion channels
- 3. Opening of ligand-gated ion channels
- 4. Opening of voltage-gated ion channels

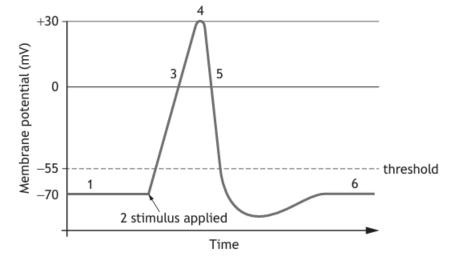
Which events contribute to the depolarisation of the resting potential of a neuron?

- A 1 and 2 only
- B 2 and 3 only
- C 1, 2 and 3 only
- D 1, 3 and 4 only

- 1. voltage-gated channels open
- 2. protein conformation change
- 3. sodium ions enter
- 4. neurotransmitter binds to receptor

The correct order is

- A $2 \rightarrow 3 \rightarrow 4 \rightarrow 1$
- B $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$
- C $2 \rightarrow 3 \rightarrow 1 \rightarrow 4$
- D $4 \rightarrow 2 \rightarrow 1 \rightarrow 3$.


The list below refers to events that may result in a nerve impulse.

List.

- 1. Ligand-gated channel opens
- 2. Protein conformation changes
- 3. Sodium ions enter post synaptic neurone
- 4. Neurotransmitter binds to membrane receptor protein

The correct order is

- A $2 \rightarrow 3 \rightarrow 4 \rightarrow 1$
- B $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$
- C $2 \rightarrow 3 \rightarrow 1 \rightarrow 4$
- $D \quad 4 \rightarrow 2 \rightarrow 1 \rightarrow 3.$

Membrane potential before nerve impulse initiated

Binding of a neurotransmitter to a ligand-gated sodium ion (Na⁺) channel

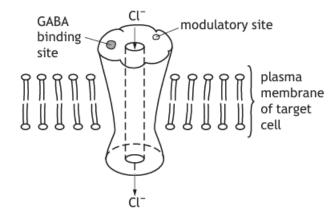
Voltage gated Na+ channels open

Voltage gated Na+ channels become inactivated

Voltage gated potassium ion (K+) channels open

Membrane potential after nerve impulse has passed

(i) State the term that describes the membrane potential at points 1 and 6.


(iii) Use the information in the diagram to explain the importance of K⁺ channels in nerve transmission.

Tetrodotoxin is a poison found in some fish, such as the pufferfish, which has its effect at stage three of the process shown in the diagram.

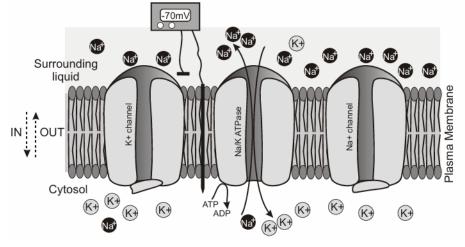
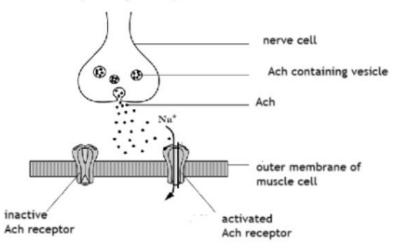

Suggest a possible mechanism for the toxicity of this substance.

Figure 1

2

Explain why the opening of GABA channels would make the generation of a nerve impulse less likely.

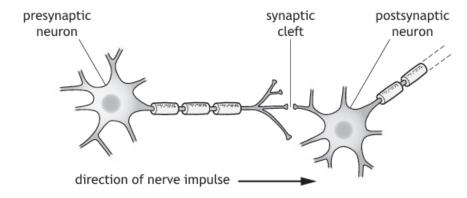


Describe the process by which neurotransmitters released into a synapse initiate an action potential in a connecting cell.

5. The diagram represents Na⁺ / K⁺ ATPase maintaining a resting potential across the membrane of a neuron.

Explain how Na $^{\scriptscriptstyle +}$ / K $^{\scriptscriptstyle +}$ ATPase restores the resting potential after an impulse.

Acetylcholine (ACh) works at the junction between nerve and muscle cells (neuromuscular junction) where it stimulates muscle contraction by binding to receptors in the outer membrane of muscle cells.



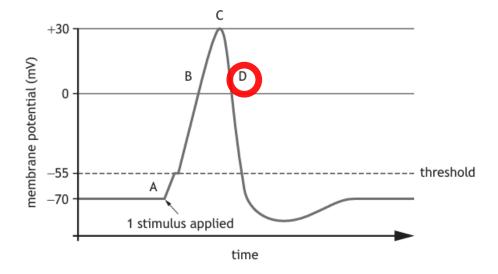
Describe the events during nerve transmission that follow binding of a neurotransmitter such as ACh to its receptor.

6	The black mamba, <i>Dendroaspis polylepis</i> , is a large African snake whose bite is extremely venomous and usually fatal to humans. Its venom consists of a mixture of toxins that primarily affect the nervous system.			
((a)	One of these toxins binds to neurotransmitter receptors at synapses, preventing their activation.		
		Describe the process by which neurotransmitters released into a synapse initiate an action potential in a connecting cell.		
((b)	Acid sensing ion channels (ASICs) are involved in the perception of pain and are activated by small changes in the pH of the surrounding cellular environment. Mambalgin is another toxin found in black mamba venom, which is known to be able to bind to ASICs.		
	١	Laboratory experiments on mice show that mambalgin has a similar effect to that of a strong painkiller.		
		Suggest the mechanism by which mambalgin might work as a painkiller by preventing the generation of a nerve impulse. 1		

8 Describe the generation and transmission of a nerve impulse in a neuron.

The diagram shows two neurons and a synapse.

The following events occur during the transmission of a nerve impulse from one neuron to the next:


- 1. The neurotransmitter binds to its receptor.
- 2. Voltage-gated sodium channels open and sodium ions diffuse into the cell causing local depolarisation.
- 3. Vesicles containing the neurotransmitter fuse with the membrane.
- 4. Ligand-gated ion channels open.
- 5. The neurotransmitter diffuses across the synaptic cleft.

The correct order of events is

- A 5, 3, 4, 1, 2
- B 3, 5, 1, 4, 2
- C 3, 5, 1, 2, 4
- D 5, 3, 1, 4, 2

2 The diagram shows the changes in membrane potential during the transmission of a nerve impulse.

Which letter represents the time when the voltage-gated potassium ion channels are open?

The list shows some events that occur in the cell membrane of a neuron during nerve transmission.

- 1. Binding of neurotransmitter to neuron
- 2. Closure of voltage-gated ion channels
- 3. Opening of ligand-gated ion channels
- 4. Opening of voltage-gated ion channels

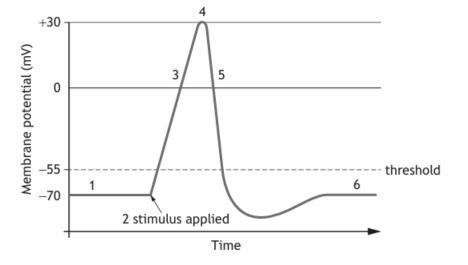
Which events contribute to the depolarisation of the resting potential of a neuron?

- A 1 and 2 only
- B 2 and 3 only
- 1, 2 and 3 only 1, 3 and 4 only

- 1. voltage-gated channels open
- 2. protein conformation change
- 3. sodium ions enter
- 4. neurotransmitter binds to receptor

The correct order is

- A $2 \rightarrow 3 \rightarrow 4 \rightarrow 1$
- B $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$
- C $2 \rightarrow 3 \rightarrow 1 \rightarrow 4$


- $4 \rightarrow 2 \rightarrow 1 \rightarrow 3$.
- The list below refers to events that may result in a nerve impulse.

List.

- 1. Ligand-gated channel opens
- 2. Protein conformation changes
- Sodium ions enter post synaptic neurone
 Neurotransmitter binds to membrane receptor protein

The correct order is

- A $2 \rightarrow 3 \rightarrow 4 \rightarrow 1$
- B $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$
- C $2 \rightarrow 3 \rightarrow 1 \rightarrow 4$

- Membrane potential before nerve impulse initiated
- Binding of a neurotransmitter to a ligand-gated sodium ion (Na⁺) channel
- Voltage gated Na+ channels open
- Voltage gated Na+ channels become inactivated
- Voltage gated potassium ion (K+) channels open
- Membrane potential after nerve impulse has passed
 - (i) State the term that describes the membrane potential at points 1 and 6.

Resting

(iii) Use the information in the diagram to explain the importance of K⁺ channels in nerve transmission.

Prevents Na⁺ channel opening.

Tetrodotoxin is a poison found in some fish, such as the pufferfish, which has its effect at stage three of the process shown in the diagram.

Suggest a possible mechanism for the toxicity of this substance.

Blocks/damages Na+ channel OR prevents Na+ channel opening.

2

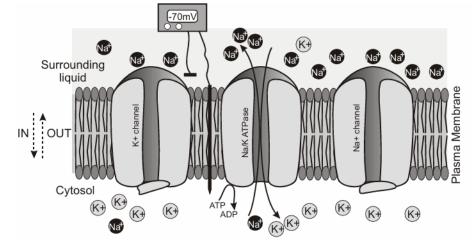
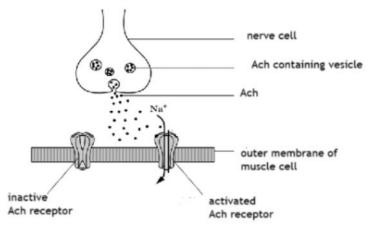

3

Figure 1 GABA modulatory site binding site plasma membrane of target

Explain why the opening of GABA channels would make the generation of a nerve impulse less likely.

Cell will become more negative inside Membrane will be more difficult to depolarize

Describe the process by which neurotransmitters released into a synapse initiate an action potential in a connecting cell.


- 1. Neurotransmitters bind to their receptors which are ligand gated channels
- 2. Binding allows an influx of positive/sodium ions
- 3. If sufficient ion movement occurs the threshold is reached
- 4. Voltage gated sodium channels open
- 5. Resulting in further depolarisation

The diagram represents Na⁺ / K⁺ ATPase maintaining a resting potential across the membrane of a neuron.

Explain how Na⁺ / K⁺ ATPase restores the resting potential after an impulse.

More Na+ pumped out than K+ pumped in (1)
Inside cell becomes negative compared to outside (1)

Acetylcholine (ACh) works at the junction between nerve and muscle cells (neuromuscular junction) where it stimulates muscle contraction by binding to receptors in the outer membrane of muscle cells.

Describe the events during nerve transmission that follow binding of a neurotransmitter such as ACh to its receptor.

- 1. Allows an influx of positive/sodium ions OR the membrane depolarise
- 2. If sufficient ion movement occurs/the threshold is reached
- 3. Voltage gated sodium channels open
- 4. Resulting in further depolarisation

7	The black mamba, <i>Dendroaspis polylepis</i> , is a large African snake whose bite is extremely venomous and usually fatal to humans. Its venom consists of a mixture of toxins that primarily affect the nervous system.			
	(a)	One of these toxins binds to neurotransmitter receptors at synapses, preventing their activation.		
		Describe the process by which neurotransmitters released into a synapse initiate an action potential in a connecting cell.	3	
		 Neurotransmitters bind to ligand gated channels Allows an influx of positive/sodium ions OR the membrane depositive/sodium ions OR the membrane depositive/sodium influx of positive/sodium ions OR the membrane depositive/sodium ions or instance in the positive/sodium ions or ins	olarise	
		(Any 3)		
	(b)	Acid sensing ion channels (ASICs) are involved in the perception of pain and are activated by small changes in the pH of the surrounding cellular environment. Mambalgin is another toxin found in black mamba venom, which is known to be able to bind to ASICs.		
	1	Laboratory experiments on mice show that mambalgin has a similar effect to that of a strong painkiller.		
		Suggest the mechanism by which mambalgin might work as a painkiller by preventing the generation of a nerve impulse.		
		mambalgin binds to receptors preventing them from opening whi	ch	

mambalgin binds to receptors preventing them from opening which prevents sufficient depolarise/initiation of an action potential

Describe the generation and transmission of a nerve impulse in a neuron.

 Resting membrane potential is no net flow of ions across membrane

2. Neurotransmitter released into synapse/initiate response.

OR

8

vesicles containing neurotransmitter fuse with membrane

- Neurotransmitters bind to specific/their receptors (at synapse)
- Neurotransmitter receptors are ligand-gated (ion) channels
 OR
 Binding of neurotransmitter opens (ligand-gated) channels
- Sodium ions enter neuron/cell OR Sodium ions move down electrochemical/concentration gradient
- Initial depolarisation of plasma membrane
- sufficient ion movement/ membrane depolarised beyond a/reaches threshold

- Opening of voltage-gated sodium channels triggered
- More sodium ions enter cell
 OR
 further depolarisation
- sodium channels close/ inactivated
- 11. (Then voltage-gated) potassium channels open
- 12. Potassium ions move out of cell OR

Membrane repolarises

13. Resting membrane potential restored

OR

Ion gradients re-established by sodium-potassium pump