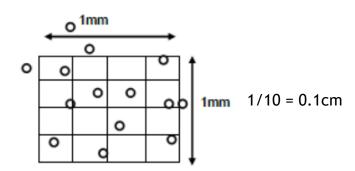
Use of haemocytometer to estimate cell numbers per cm³ in a liquid broth culture.


Step 1 Work out volume of liquid placed in haemocytometer slide in cm³.

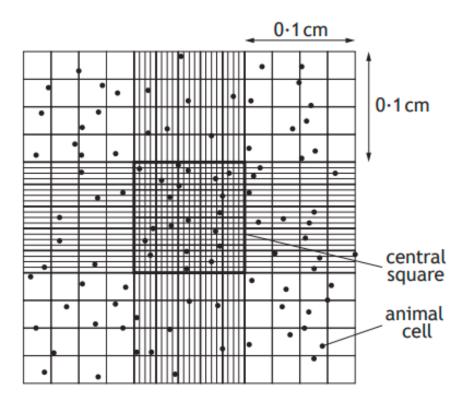
Length x breadth x depth (remember if if mm divide by 10)

- Step 2 Count number of cell colonies viewed in diagram (microscope).
- Step 3 Proportion calculation to scale up per cm³.
- Q The diagram below represents red blood cells in a haemocytometer.

The grid is **0.1mm** in depth.

$$1/10 = 0.1$$
cm

A—


1. Work out Depth

 $L \times b \times h = 0.1 \times 0.1 \times 0.01 = 0.0001 \text{cm}^3$

- 2.Count Cells
- 10 RBC's are on the inside of the haemocytometer grid.
- 3.Proportion 0.0001cm³ → 10 RBC 1cm³ _ ____ 100,000 RBC

Specimen 2 (no longer available on SQA website) - easier as no mm to cm conversion

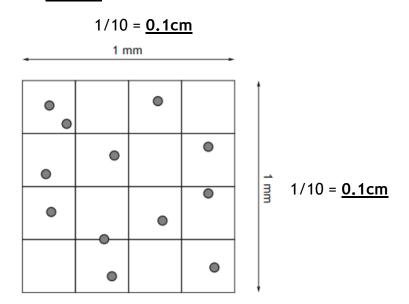
The diagram below shows a haemocytometer counting chamber containing animal cells. The depth of the chamber is 0.01 cm.

The concentration of animal cells, based on the cell count from the **central square**, is

1. Work out volume

$$L \times b \times h = 0.1 \times 0.1 \times 0.01 = 0.0001 \text{cm}^3$$

2.Count Cells


20 animal cells on the inside of the haemocytometer grid.

3.Proportion

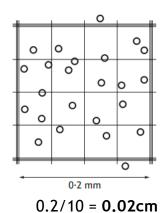
$$\begin{array}{ccc}
0.0001 \text{cm}^3 & \longrightarrow & 20 \text{ animal cells} \\
\underline{1 \text{cm}^3} & \longrightarrow & \underline{200, 000 \text{ animal cells}} \\
& = \underline{2.0 \times 10^5 \text{ animal cells}}
\end{array}$$

2022 Q2b

A haemocytometer can be used to estimate the number of bacterial cells in a liquid culture. The figure represents bacterial cells from a culture, placed in a haemocytometer that has a depth of 0.1 mm 0 1/10 = 0.01 cm

Calculate the number of cells per cm3 of the liquid culture.

1. Work out volume


$$L \times b \times h = 0.1 \times 0.1 \times 0.01 = 0.0001 \text{cm}^3$$

- 2.Count Cells
- 12 bacterial cells are on the inside of the haemocytometer grid.

3. Proportion

Specimen Paper

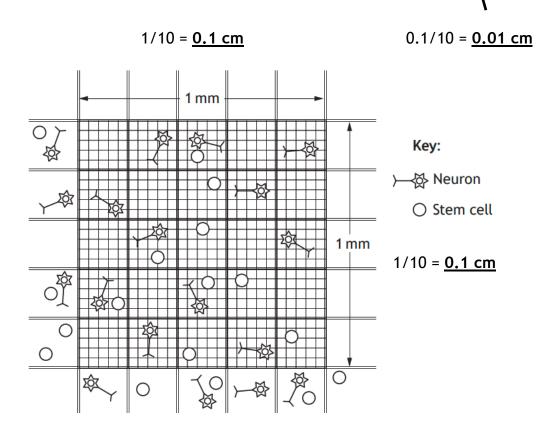
The diagram shows a haemocytometer grid that was used to estimate the number of cells in a <u>10 cm3</u> microbial culture. The depth of the counting chamber is <u>0.2 mm</u>.

$$0.2/10 = 0.02 \text{ cm}$$

Calculate the number of cells per cm³ of the liquid culture.

1. Work out volume

$$L \times b \times h = 0.02 \times 0.02 \times 0.02 = 0.000008 \text{cm}^3$$


- 2.Count Cells
- 22 bacterial cells are on the inside of the haemocytometer grid.

3.Proportion
$$0.000008 \text{cm}^3$$
 \longrightarrow 22 bacterial cells $\underbrace{10 \text{cm}^3}$ \longrightarrow $\underbrace{27,500\ 000\ \text{bacterial cells}}_{=\ 2.75\ \text{x}\ 10^7\ \text{bacterial cells}}$

**** Be careful this question asked for 10cm3 NOT the usual 1cm3.

2016 Paper

Scientists used a haemocytometer to perform a cell count to calculate the number of stem cells that developed into neurons. The diagram below represents a sample from a culture placed in a haemocytometer and viewed under a microscope. The grid is <u>0.1 mm</u> in depth.

Calculate the number of neurons in 1 cm³ of the culture.

1. Work out volume

$$L \times b \times h = 0.1 \times 0.1 \times 0.01 = 0.0001 \text{cm}^3$$

2.Count Cells

11 neurons on the inside of the haemocytometer grid.

3. Proportion

$$0.0001 \text{cm}^3 \qquad \qquad 11 \text{ bacterial cells}$$

$$11 \text{ bacterial cells}$$

$$110,000 \text{ neurons}$$