1.3 Transition Metals

Electronic Configuration of Transition Metals

- d-block transition metals have an incomplete d-subshell in at least one of their ions.
- 4s electrons are lost before 3d electrons during ionisation to positive ions
- filling of d-orbitals follows the Aufbau Principle

	Electronic Configuration		
Element	Spectroscopic Notation	Orbital Box Notation (d-block only)	
Scandium	[Ar] 3d ¹ 4s ²	↑	
Titanium	[Ar] 3d ² 4s ²	↑ ↑	
Vanadium	[Ar] 3d ³ 4s ²	↑ ↑ ↑	
Chromium	[Ar] 3d ⁵ 4s ¹	<u> </u>	
Manganese	[Ar] 3d ⁵ 4s ²	<u> </u>	
Iron	[Ar] 3d ⁶ 4s ²	<u> </u>	
Cobalt	[Ar] 3d ⁷ 4s ²	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow$	
Nickel	[Ar] 3d ⁸ 4s ²	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow$	
Copper	[Ar] 3d ¹⁰ 4s ¹	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow$	
Zinc	[Ar] 3d ¹⁰ 4s ²	$\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow$	

Cr and Cu are exceptions

Oxidation States

- Fe2+ ions have an oxidation state of +2
- Fe³⁺ ions have an oxidation state of +3

But what is the oxidation state of Mn in the MnO_4 ?

Rules for Oxidation States

- Oxidation number in a free or uncombined element in zero e.g. Mg(s) and Cl in Cl₂ gas
- 2. For single atoms ions, the oxidation number is the same as the charge on the ion
 - e.g. Cl has oxidation number = -1
 - O²- has oxidation number = -2
 - Al3+ has oxidation number = +3
- 3. In most compounds oxidation number of
 - i. hydrogen is +1 [except hydrides where H is -1]
 - ii. oxygen is -2 [except peroxides where O is -1]
- 4. The algebraic sum of all the oxidation numbers in a molecule must be zero
- 5. The algebraic sum of all the oxidation numbers in a polyatomic ion must be equal to the charge on the ion
 - e.g. S in SO_4^{2-} S has oxidation number = +6

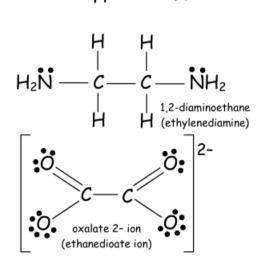
- Oxidation numbers can be used to work out if oxidation or reduction has taken place
 - o increase in oxidation number oxidation has occurred
 - o decrease in oxidation number reduction has occurred

e.g.
$$MnO_4^- + 8H^+ + 5e^- \xrightarrow{reduction} Mn^{2+} + 4H_2O$$

- compounds containing metals with high oxidation numbers tend to be oxidising agents
 - o agents are reduced themselves to lower oxidation number
- compounds containing metals with low oxidation numbers tend to be reducing agents
 - o agents are oxidised themselves to increase oxidation number
- Transition metals exhibit various oxidation states of differing stability
 - It is very common to have an oxidation state of +2 as the 4s² electrons are lost before 3d electrons
 - Subsequent loss of 3d electrons by transition metals forms further oxidation states
 - Changing from one oxidation state to another is important in transition metal chemistry
 - o It is often characterised by a change in colour

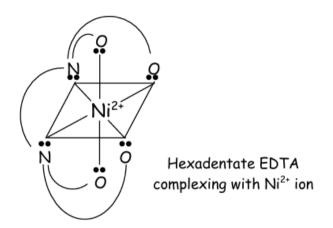
Ion	Oxidation State of Transition Metal	Colour
VO ₃ -	+5	Yellow
VO ²⁺	+4	Blue
V ³⁺	+3	Green
V ²⁺	+2	Violet

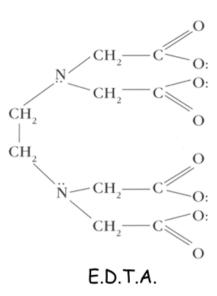
Transition Metal Complexes


- A complex consists of a central metal ion surrounded by ligands
- A ligand is a molecule or ion electron donor which bonds to the metal ion by the donation of one or more electron pairs to unfilled metal ion orbitals
 - o Water is a common neutral ligand with 2 lone electron pairs
 - Ammonia NH₃ is neutral ligand with one lone pair
 - o There are negative ions which are ligands
 - cyanide ion CN⁻
 - halide ions: F⁻, Cl⁻, Br⁻, I⁻
 - nitrite ion NO₂⁻
 - hydroxide ion OH⁻

· Ligands which donate 1 pair of electrons are monodentate

o Dentate comes from Latin for tooth


H₂O and NH₃ are monodentate


- Ligands which donate 2 pairs of electrons are bidentate
 - The 2 pairs of electrons must be on different parts of the molecule, not the same atom
 - Oxalate ions and 1,2-diaminoethane are both bidentate

 polydentate means that a ligand has more than one pair of electrons is donated to the central metal ion

- ligands are called chelating agents (chelate: from the Greek for claw)
- Ethylenediaminetetraacetic acid (EDTA) is a common hexadentate ligand used in volumetric analysis and complexes with metal ions in a ratio of 1:1

Co-ordination Number

- The number of bonds of the ligand(s) to the central ion is called the co-ordination number
 - EDTA has a co-ordination number of 6
 - o $[Cu(H_2O)_6]^{2+}$ has a co-ordination number of 6 as the central Cu^{2+} ion is surrounded by 6 water molecules
 - \circ [CuCl₄]²⁻ has a co-ordination number of 4 as the central Cu²⁺ ion is surrounded by 4 negative chloride ions

Naming Complexes

- a) Writing the Formula of Complexes
- standardised set of rules (IUPAC)
- Formula of complex ions are written in square brackets
- · Metal symbol comes first
- Negative ligands come next
- Neutral ligands come next
- Overall charge written after square brackets e.g. $[CuCl_4]^{2-}$, $[Cu(H_2O)_6]^{2+}$

b) Writing the Name of Complexes

- Ligands should be named first (alphabetically) followed by the name of the central metal ion
- If the ligand is a negative ion

o ide ending becomes -ido

e.g. chloride ions become chlorido cyanide ions become cyanido

o ate ending become -ato

e.g. nitrate NO₃ ions become nitrato

o ite ending becomes -ito

e.g. nitrite NO2 ions become nitrito

If ligand is neutral

If ligand is water aqua
 If ligand is ammonia ammine
 If ligand is CO carbonyl

- Mono, di, tri, tetra, penta, hexa, etc prefixes are used for multiple ligands of the same type
- If complex ion is overall a negative ion (anion), the suffix -ate is added to the metal

nickel becomes nickelate (II)

iron becomes ferrate (III) [not ironate]
 copper becomes cuprate (II) [not copperate]

- If complex ion is overall a positive ion (cation), the metal does not have the suffix -ate
- The oxidation state of the metal is written after the metal (roman numerals in brackets)

Complex Diagram	Formula of Complex	Name of Complex
NH ₃ NH ₃ NH ₃ NH ₃ NH ₃	[Ni(NH ₃) ₆] ²⁺	Hexaamminenickel(II)
CN CN CN CN CN CN CN	[Fe(CN) ₆] ³⁻	Hexacyanidoferrate(III)