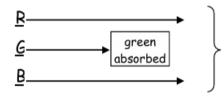
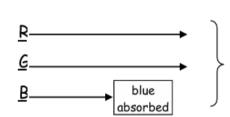

Colours and Complex Ions

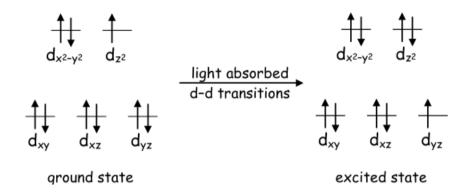

Transition metals ions (simple or complex) are often coloured

- ion absorbs light in certain parts of the visible spectrum
- · remaining wavelengths are transmitted
- colour seen is complementary to colour absorbed



G + B transmitted cyan (green/blue) observed

R + B transmitted magenta (red/blue) observed


R + G transmitted yellow (red/green) observed

In a free ion, all five 3d-orbitals are degenerate (of equal energy)

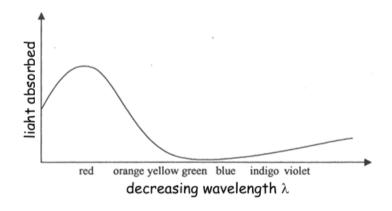
- 3d orbitals are labelled d_{xy}, d_{xz}, d_{yz}, d_{x²-y²}, d_{z²}
- $d_{x^2-y^2}$ and d_{z^2} orbitals are raised to a higher energy level due to electrostatic repulsion from the ligands in the complex
- energy difference between the split in the d-orbitals depends on the ligand involved. Ligands are listed in the Spectrochemical Series

Transition metals can absorb light because photons (at a particular energy and therefore particular wavelength) excite electrons in the lower d-orbitals (ground state) up to a higher energy d-orbital (excited state)

- this absorbed energy dissipates as heat energy and does not remerge as light energy
- e.g. Cu²⁺ ion with electron arrangement [Ar] 3d⁹

• For Cu^{2+} , blue green is transmitted as red light is absorbed to excite a d-orbital electron.

However


- MnO₄ ions have Mn in Oxidation State = 7
- Mn has electronic configuration of 1s² 2s² 2p⁶ 3s² 3p⁶ in this state
- Mn has no electrons in 3d orbital in this state
- Purple colour is caused by different kind of electron transition

UV and Visible Absorption Spectroscopy

- Effect of d-d transitions can be studied using UV and visible spectroscopy
- UV and visible absorption spectroscopy involves the energy difference between and electron's ground and excited states being supplied by particular wavelengths in the UV and visible regions of the EM spectrum

o UV
$$\lambda = 200 - 400 \text{ nm}$$

o Visible $\lambda = 400 - 700 \text{ nm}$

- The particular wavelengths used to promoted (excite) electrons are removed from the light passing through the sample and appear as dark lines in the transmitted light spectrum
- The spectrophotometer compares the reduced intensity of particular wavelengths from the sample against the original intensity of the light passing though the sample

Transition Metal Catalysis

 Transition metals often act as catalysts in a wide selection of chemical reactions

Process	Reaction	Catalyst Used
Haber	$N_2 + 3H_2 \rightarrow 2NH_3$	Fe granules
Contact	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$	V ₂ O ₅
Ostwald	4NH ₃ + 5O ₂ → 4NO + 6H ₂ O	Pt gauze
Catalytic Converter in car exhaust	4CO + 2NO ₂ → 4CO ₂ + N ₂	Platinum Pt, Palladium Pd and Rhodium Rh
Preparation of Methanol	CO + 2H ₂ → CH ₃ OH	Copper
Preparation of Margarine	$C_{17}H_{33}COOH + H_2 \rightarrow C_{17}H_{35}COOH$	Nickel
Polymerisation of Alkenes	$n C_2H_4 \rightarrow (C_2H_4)_n$	Titanium compounds

- Transition metals can form a variable number of bonds due to the availability of unoccupied and half-filled d-orbitals
- This allows the easier formation of intermediate complexes
- This provides reaction pathways of lower energy to proceed
- The variability of oxidation state of transition metals is another important factor. The transition metal reverts to original oxidation state once the reaction is complete