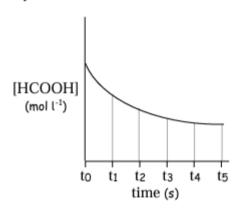
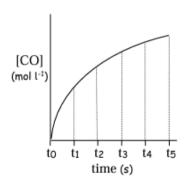
Kinetics is the study of the speed of chemical reactions

- · Factors affecting the rate of reaction include
 - o Temperature
 - Concentration of reactants
 - o Particle size/surface area
 - o Presence of a catalyst
- Activation energy must be overcome to react
- Activated complex formed as reaction proceeds.


Reaction kinetics gives information on the pathways of a chemical reaction

- · Relates to the effect of the concentration on the reaction rate
- Rate is usually expressed as the change of concentration per unit time
- Rate is independent of the size of the reaction sample analysed.


For example:

Rate can be determined by following:

a) decrease in the concentration of HCOOH

b) increase in concentration of CO

Average Reaction = $\frac{+([CO]_2 - [CO]_1)}{t_2 - t_1}$ In both graphs, reaction rate decreases as the reaction proceeds.

- Reaction rate decreases as gradient of line approaches zero (horizontal)
- The shorter the time interval, the more accurate the measurement of instantaneous rate
- As Δt approaches zero, it becomes dt

Instanteous Reaction =
$$\frac{-d [HCOOH]}{dt}$$
 or Reaction = $\frac{d [CO]}{dt}$

The rate, at particular time t, is given by the gradient of the tangent to the curve at time t.

- At t=0, rate has its maximum value
- It is usual to determine initial rate of reaction and use this value to determine other kinetic values

2.9.1 Reaction Rates and Concentration

Consider the following reaction:

$$A + B \longrightarrow products$$

 Rate of forward reaction depends on [A] & [B] at that particular time.

The Rate Law

Rate
$$\alpha$$
 [A][B]

Rate =
$$k[A]^n[B]^m$$

Where k is the rate constant.

n is the order of the reaction with respect to \boldsymbol{A} m is the order of the reaction with respect to \boldsymbol{B}

The overall order of the reaction is the sum of the powers of the concentrations (i.e. n+m)

Rate Law Equation	Order of Reaction
rate α [A] 0	0
rate α [A] ¹	1
rate α [A] ²	2
rate α [A] ¹ [B] ¹	2
rate α [A]¹[B]²	3

Values of order of reaction (n+m) refer to actual numbers of particles involved in a single step controlling the overall rate of reaction.

- The controlling rate step is called the rate determining step.
- These values are not the stoichiometric coefficients from a balanced chemical equation (i.e. not the numbers in front of the chemical formulae)

e.g.
$$H_2O_2 + 2HI \longrightarrow 2H_2O + I_2$$

rate α [H₂O₂][HI] (discovered by experiment)

order of reaction = 2 despite there being 3 reactant molecules $(1x H_2O_2 \text{ and } 2x HI)$

Determining the Rate Constants & Order of Reaction

- Rate constant determined by series of experiments
 - Initial concentration of reactants are changed between experiments

Example 1: Calculate the rate constant and the order of each reactant

For the reaction:

 $A + B + C \longrightarrow D$

Results of Experiments:

TROUBLE OF EXPORTMENTO				
Experiment	[A] / mol l ⁻¹	[B] / mol l ⁻¹	[C] / mol l ⁻¹	Initial rate of D formed / mol l-1 s-1
1	1.0	1.0	1.0	2.0
2	2.0	1.0	1.0	4.0
3	1.0	2.0	1.0	2.0
4	1.0	1.0	2.0	8.0

Analysis of Results

Experiments Compared	Change in Conditions	Effect of Change on Rate	Order of Reactant
1+2	[A] x2	rate x2	[A] ¹
1+3	[B] x2	no change in rate	[B] ⁰
1+4	[C] x2	rate x4	[C] ²

<u>Conclusions</u>

Rate
$$\alpha$$
 [A]¹ [B]⁰ [C]²

$$\therefore$$
 Rate α [A][C]²

Reaction is

1st Order with respect to [A]

Zero Order with respect to [B]

2nd Order with respect to [C]

Overall Order = 1 + 0 + 2 = 3

To calculate the rate constant, substitute in values from experiment 1:

Rate =
$$k[A][C]^2$$

2.0 = $k \times [1.0] \times [1.0]^2$
 $k = \frac{2.0 \text{ mol } l^{-1} \text{ s}^{-1}}{1 \times 1^2 \text{ mol}^3 l^{-3}}$
= 2.0 $l^2 \text{ mol}^{-2} \text{ s}^{-1}$

Example 2: Calculate the rate constant and the order of both reactants

For the reaction: $2NO + O_2 \longrightarrow 2NO_2$

Results of Experiments:

Evmanimant	Initial Concentration/ mol l-1		Initial rate of NO2 formed
Experiment	[NO]	[O ₂]	/ mol l ⁻¹ s ⁻¹
1	2.0 ×10 ⁻⁵	4.0 ×10 ⁻⁵	1.4 ×10 ⁻¹⁰
2	2.0 ×10 ⁻⁵	8.0 ×10 ⁻⁵	2.8 ×10 ⁻¹⁰
3	4.0 ×10 ⁻⁵	4.0 ×10 ⁻⁵	5.6 ×10 ⁻¹⁰

Analysis of Results

Experiments Compared	Change in Conditions	Effect of Change on Rate	Order of Reactant
1+2	[O ₂] x2	rate x2	[O ₂] ¹
1+3	[NO] x2	rate x4	[NO] ²

Conclusions: Rate α [NO]² [O₂] : overall order = 2+1 = 3

Reaction is 1^{st} Order with respect to [NO] & 2^{nd} Order with respect to $[O_2]$

Rate = k x [NO]² x [O₂]
1.4 x10⁻¹⁰ = k x [2.0 x10⁻⁵]² x [4.0 x10⁻⁵]
k =
$$\frac{1.4 \times 10^{-10}}{[2.0 \times 10^{-5}]^2 \times [4.0 \times 10^{-5}]}$$
 mol³ l⁻³
= 8.75×10³ l² mol⁻² s⁻¹

2.9.2 Kinetics and Reaction Mechanism

Chemical kinetics can follow the bottle-neck principle

 A large crowd leaving a car park after a concert can take a long time to leave as they have to queue to exit the car park though a narrow exit.

Chemical reactions proceed in a series of sequential stages

- Overall rate of reaction determined by the slowest step
- Slowest step is called the rate determining step
- Experimentally determined rate equations and order of reactions can give information about the mechanism of the reaction

Example 1:
$$H_2O_2 + 2HI \longrightarrow 2H_2O + I_2$$

Rate = k $[H_2O_2]$ [HI] (order of both reactants =1)

- Rate controlled by a step where one molecule of H₂O₂ reacts with one molecule of HI
- Step 1 $H_2O_2 + HI \longrightarrow X$ (slow: Rate Determining Step)
- Step 2 X + HI → product (faster step)

where X is an intermediate formed during the reaction

- Kinetics of reaction give no direct information about the nature of the intermediate chemical X or the total number of steps involved
- Further information is deduced by other means, for example spectroscopy

Actual Mechanism:

$$H_2O_2 + HI \longrightarrow H_2O + HOI$$

 $HOI + HI \longrightarrow H_2O + I_2$

Where HOI is an intermediate formed with a transient lifetime.

Example 2: Hydrolysis of a primary halogenalkane

$$CH_3CH_2Br + OH^- \longrightarrow CH_3CH_2OH + Br^-$$

Rate = k [CH_3CH_2Br] [OH^-]

- both reactants are 1st order reactants
- both reactants are involved in the rate determining step
 - rate determining step is in fact the only step in this reaction mechanism
 - OH⁻ ion attacks the back of the molecule to displace the bromine atom to form a bromide Br⁻ ion.
 - This mechanism is known as a S_N2 process in Unit 3

Example 3: Hydrolysis of a Tertiary Halogenalkane

$$(CH_3)_3CBr + OH^- \longrightarrow (CH_3)_3COH + Br^-$$
rate = k [(CH₃)₃CBr]

 \therefore [(CH₃)₃CBr] is 1st order, [OH⁻] is zero order

Rate determining step does not involve the OH⁻ ion

$$(CH_3)_3CBr \longrightarrow X^+ + Br^-$$
 (slow step)
 $X^+ + OH^- \longrightarrow (CH_3)_3COH$ (fast step)

where X is the $(CH_3)_3C^+$ ion - the carbo cation

Questions:

1. Bromide ions and bromate ions react in acid solution to give bromine according to the equation:

$$6H^+ + 5 Br^- + BrO_3^- \longrightarrow 3Br_2 + 3H_2O$$

Rate measurements on four different reaction mixtures gave the following data:

Evnoniment	[H ⁺]	[Br ⁻]	[BrO ₃ -]	Relative rate
Experiment	/mol l ⁻¹	/mol l ⁻¹	/mol l ⁻¹	/ mol l ⁻¹ s ⁻¹
1	0.45	0.375	0.075	1
2	0.45	0.75	0.075	2
3	0.9	0.375	0.075	4
4	0.45	0.375	0.15	4

- a) What is the rate expression for the reaction?
- b) What is the order of the reaction with respect to each of the reactants?
- c) What is the overall order of the reaction?
- d) Explain why the rate equation and the overall equation are different.
- 2. The reaction rates for the following reaction at various starting concentrations are given in the table below:

$$2N_2O_5 \longrightarrow 4NO_2^- + O_2$$

$[N_2O_5]$ (mol l^{-1})	Rate (mol l ⁻¹ s ⁻¹)
2.20	2.25 x10 ⁻⁵
2.00	2.10 ×10 ⁻⁵
1.52	1.58 ×10 ⁻⁵
0.93	0.96 ×10 ⁻⁵

- a) Draw a graph of the rate against $[N_2O_5]$
- b) Calculate the value of the rate constant.