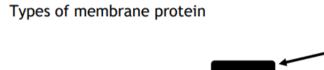
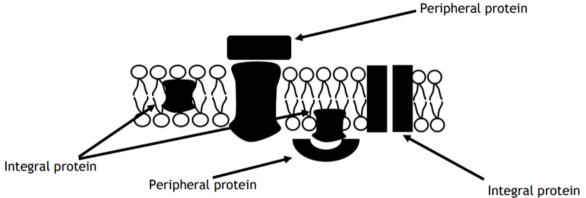
1.3 Membrane Proteins

Cell membrane

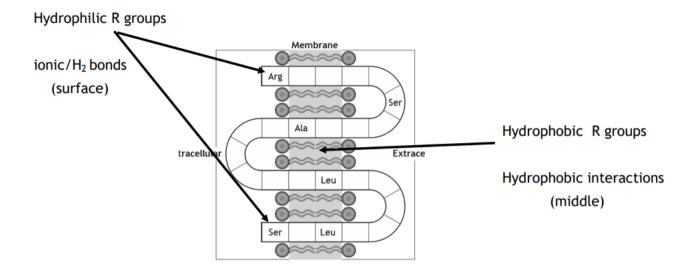

Made up of a phospholipid bilayer

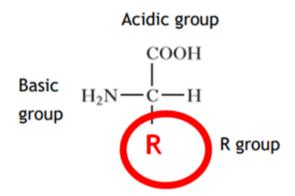

Hydrophobic tail (non polar) Hydrophobic tail (non polar)

- 1. Hydrophilic head (outer/inner edge)
- 2. Hydrophobic tail (middle)

Hydrophilic head (polar)

Hydrophilic head (polar)




Many peripheral membrane proteins interact with the surfaces of integral membrane protein

Type of Membrane protein	Description	Type of R groups on protein	Type of interactions
Integral	Held within the phospholipid bilayer Some are transmembrane	Hydrophobic R groups in middle of protein Hydrophilic R groups at surface	Strong hydrophobic interactions
Peripheral	Bound to surface of membrane	Hydrophilic R groups at surface	Ionic or hydrogen bonds

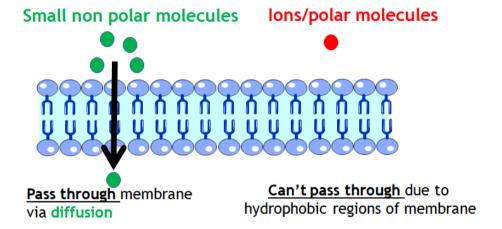
1.3 Membrane Proteins

Hydrophilic/Hydrophobic Amino Acids

Type of Amino Acid	Hydrophilic/Hydrophobic	R group
Basic	Hydrophilic (+ve charge)	NH ₃ ⁺ group
Acidic	Hydrophilic (-ve charge)	COO ⁻ group
Polar	Hydrophilic	OH group
Non Polar	Hydrophobic (no charge)	CH₃ group

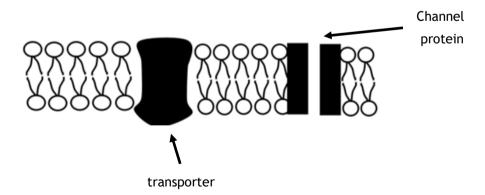
1.3 Membrane Proteins

Movement of Molecules across membrane


Phospholipid bilayer acts as a BARRIER across the membrane to MOST molecules.

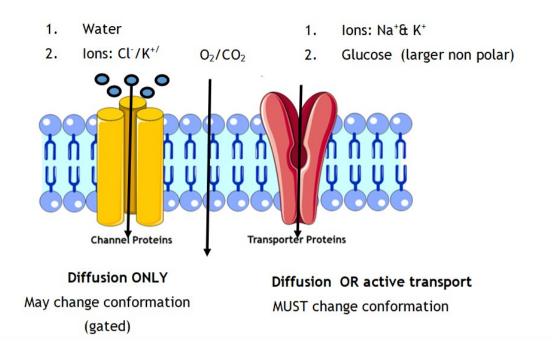
STOPS

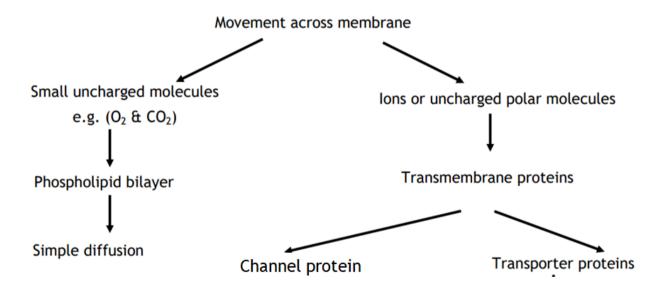
- 1. Large uncharged (non polar) molecules
- 2. Ions/polar molecules


GO

Some <u>small non polar</u> molecules (O_2/CO_2) can squeeze in between the phospholipid bilayer heads, diffusing across the membrane.

Facilitated Diffusion


<u>Passive transport</u> of substances across the membrane through specific <u>transmembrane</u> proteins


To perform <u>specialised functions</u>, different cell types have <u>different</u> channel & transporter proteins

1.3 Membrane Proteins Summary

Movement across the Membrane

Movement across the Membrane

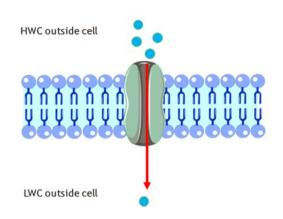
Transmembrane protein	Process	Example of protein
Channel	Passive (diffusion)	Simple channels
		Ligand & Voltage gated channels
Transporter	Active transport	Sodium Potassium Pump
	Facilitated Diffusion	Glucose Symport

1.3 Channel Proteins

Channel Proteins

<u>Multi-subunit</u> proteins with the subunits arranged to form <u>water-filled pores</u> that extend across the membrane

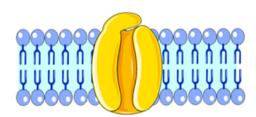
Function of channel proteins

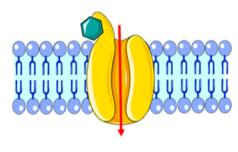

To move molecules across the membrane by diffusion.

Types of Channel Proteins

1. Simple ungated (Aquaporin)

Highly specific facilitated diffusion of water into cell.


Always open -no conformational change required.

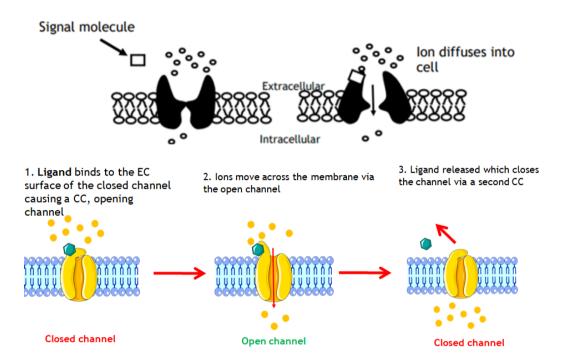

2. Gated Channel Proteins

These channel proteins change conformation to allow/prevent diffusion,

Closed (inactive)

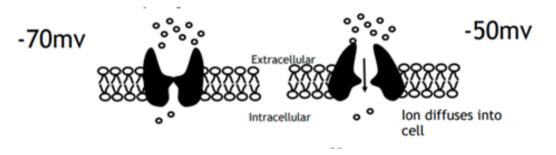
Open (active)

Gt7hln ,u,vo7htyj8,l.

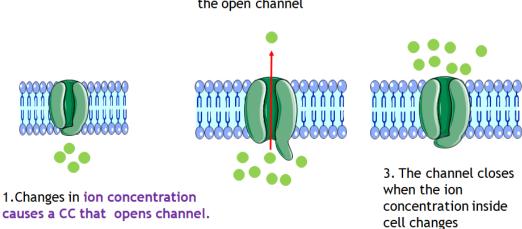

closed open

1.3 Gated Channel Proteins

These channel proteins **change conformation** to allow/prevent **diffusion**,


1. Ligand-gated channels

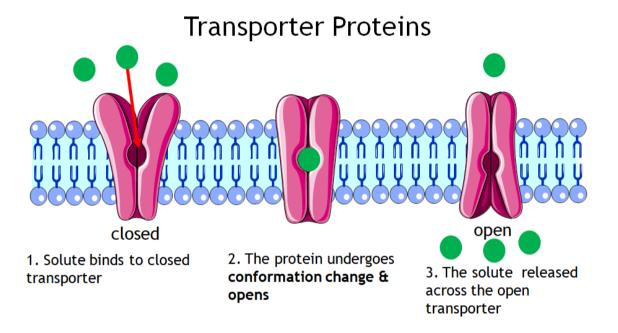
Controlled by the binding of signal molecules. Ion moves In/out cell by diffusion.



2. Voltage gated channels

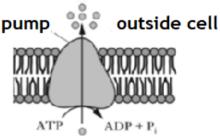
Controlled by changes in <u>ion concentration</u> as this affects the <u>membrane potential</u>. Ion moves In/out cell by diffusion.

2. Ions move across the membrane via the open channel



1.3 Channel Proteins

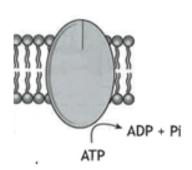
Transporter proteins


Operate between two conformations to move substances across the membrane.

- 1. A **specific** substance binds to the transporter protein
- 2 This results in a **conformational change** in the transporter protein
- 3. This releases the substance on the other side of the membrane

Pumps

One type of transporter proteins that is coupled to an **energy source** to enable **active transport**.



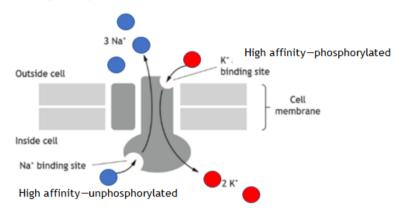
inside cell

ATPases

Protein pumps that <u>directly hydrolyse ATP</u> to provide the energy for the conformational change required to move substances by active transport.

Example Na K ATPase

1.3 Channel Proteins

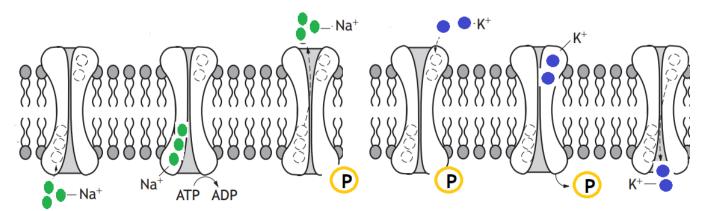

Na/K ATPase

- 3 Sodium move OUT the cell by active transport when pump is unphosphorylated
- <u>2 Potassium</u> move IN by active transport when pump is <u>phosphorylated</u>.

Energy Cost of Pump

The pump uses **energy directly** from ATP hydrolysis(ATPase) for active transport.

This accounts for a high proportion of the basal metabolic rate

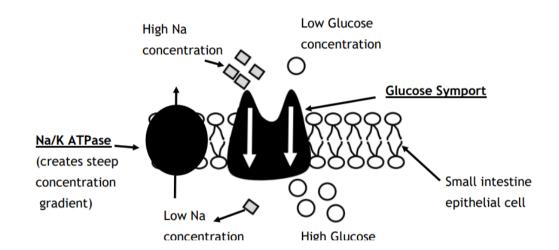


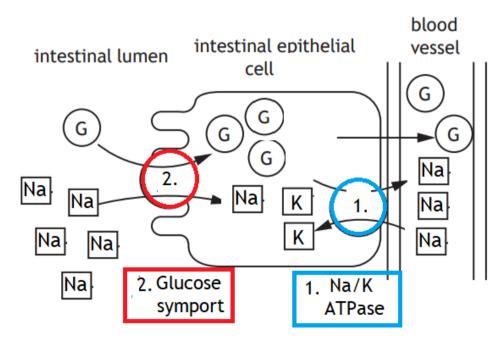
Function

Na/K pump establishes both <u>concentration gradients</u> and an <u>electrical gradient</u> (membrane potential) within the cell.

Stages of Na K ATPase

- 1. In the <u>unphosphorylated stage</u>, the pump has <u>high affinity</u> for <u>Na⁺ ions</u> and 3 Na⁺ ions bind to the pump inside cell.
- 2. <u>Phosphorylation by ATP</u> causes a <u>conformation change</u> of the pump which lowers the affinity for Na⁺ releasing <u>3Na</u>⁺ ions outside of the cell
- 3. $\underline{2}$ \underline{K}^+ ions bind outside the cell in the <u>phosphorylated state</u> as they have high affinity for the pump in the phosphorylated state.
- 4. <u>Dephosphorylation</u> causes a <u>further conformation change</u> which lowers the affinity of K⁺ ions and 2 K⁺ ions are released inside the cell
- 5. The pump returns to its original conformation.


1.3 Transporters: Glucose Symport


Location-small intestinal epithelial cells

Glucose & Na⁺ ions are transported **INTO** the cell at the same time via the glucose transporter.

- 1. Na⁺ ions move in by <u>diffusion</u>
- 2. Glucose moves in by active transport.

The NaK pump creates a <u>very steep concentration gradient of sodium</u> to enable rapid diffuse into cells by the glucose symport which enables glucose to be driven into cells against its concentration gradient at the same time in same direction

Steep extracellular Na concentration enables glucose to be driven into cells at same time

lar concentration of Na 3 Na OUT for 2K in Creates steep extracellu-

1.3 Transmembrane proteins

Transporters must change conformation Transporter Transporter Ungated channel Gated channel 1. ligand gated (aquaporin) Glucose pump/ATPase 2. voltage gated symport 0 0 00 direction of transport 0 0 Diffusion Diffusion facilitated Active diffusion **Transport**

cytoplasm