1.1 Lab Skills

Lab Hazards

Harm caused to an individual when working in a laboratory

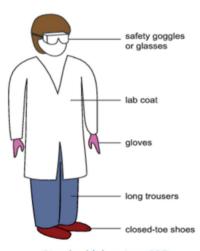
Types of Lab Hazards

- 1. Toxic or corrosive chemicals
- 2. Heat or flammable substances
- 3. Pathogenic organisms
- 4. Mechanical equipment.

Risk

The <u>likelihood</u> of harm arising from exposure to a hazard.

Risk assessment


Involves identifying control measures to minimise the risk.

Control measures

Measures aim to reduce risk of harm caused by a hazard.

Types

- 1. Appropriate handling technique
- 2. Protective clothing and equipment
- 3. Aseptic technique.

Standard laboratory PPE

1.2 Dilution

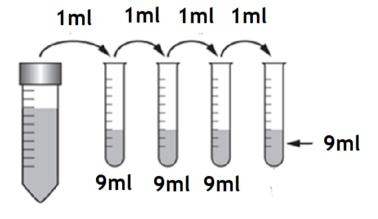
Linear Dilution Series

Differ by an equal interval

E.g 0·1M, 0·2M, 0·3M

Flask	Inhibitor volume (cm³)	Glucose volume (cm³)	FBS volume (cm³)	Buffer volume (cm³)	Final inhibitor concentration (%)
1	0.00	1.00	5.00	19.00	0
2		1.00	5.00		20

Logarithmic Dilution Series

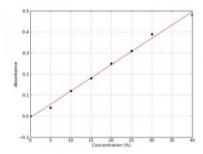

Differ by a constant proportion

E. g 10^{-1} , 10^{-2} , 10^{-3}

Serial Dilution

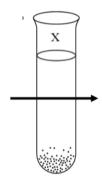
Taking 1 ml of a stock solution and adding this to 9ml of water. Then 1ml of the newly diluted solution is extracted and subsequently added to 9ml of water each time.

This dilutes the solution by a factor of 10 each time creating a logarithmic dilution series.

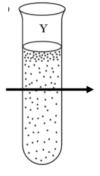

1.3 Spectrophotometer/Colorimeter

Concentration of Unknown solution

Measured by a device called a spectrophotometer OR colorimeter by measuring the absorbance/transmission of a solution at a certain wavelength of visible light.


Absorbance

The more intense the colour (concentration) the higher the absorbance .



Transmission

As turbidity increases, less light passes through the sample and the transmission value is lower.

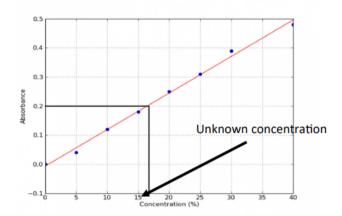
Low turbidity
High transmission value

High turbidity
Low transmission value

Calibration

Calibration via a colourless solution should always be carried out to ensure the machine is working correctly.

Absorbance values 0.00

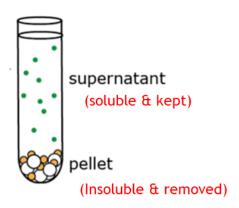

Transmission 100%

1.3 Spectrophotometer/Colorimeter

Standard Curve

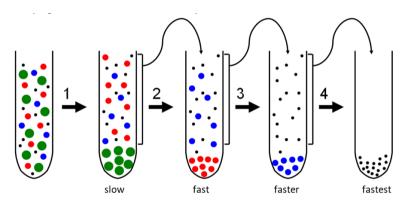
A standard curve can be created by measuring known concentrations of solution and taking readings to plot a line of best fit.

An unknown concentration can then be read off this to ascertain the unknown concentration.



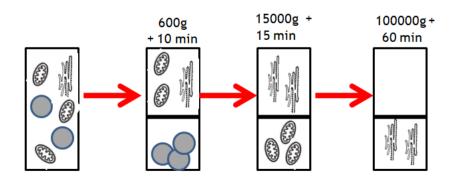
1.4 Separating techniques: Centrifugation

Centrifuge


To separate substances of differing density

- 1. More dense components settle in the pellet
- 2. <u>Less dense</u> components remain in the <u>supernatant</u>.

Increasing speed/time in successive centrifuge cycles

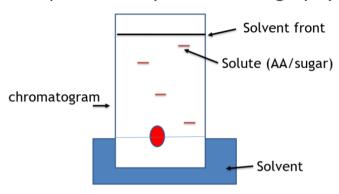

Less dense material moves down into pellet Only lightest molecules are left in supernatant.

To separate cell organelles

Higher speed/force is applied repeatedly for longer time periods to separate increasing less dense organelles

Step	Centrifuge conditions			
	Force (g)	Time (minutes)	Cell component(s) in pellet	
1	600	10	nucleus, cytoskeleton	
2	15 000	15	mitochondria	
3	100 000	60	plasma membrane, endoplasmic reticulum fragments	

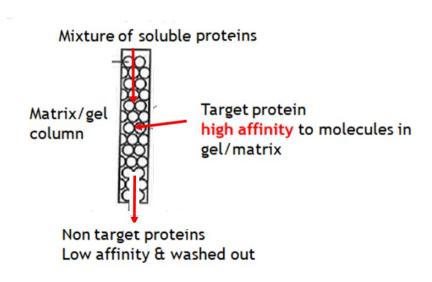
1.4 Separating techniques: Chromatography


Chromatography

1. Paper and thin layer chromatography

To separate substances such as amino acids or sugars.

The speed that each solute travels along the chromatogram depends on its differing solubility in the solvent used.

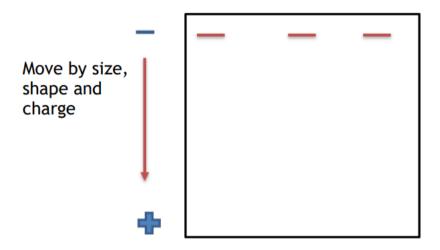


2. Affinity Chromatography

A solid matrix or gel column is created with specific molecules bound to the matrix/gel and mixture of proteins passed down column.

- 1. Soluble, <u>target proteins</u> with a <u>high affinity</u> molecules bound to gel/matrix become attached to them.
- 2. <u>Non-target</u> molecules with a <u>weaker affinity</u> are washed out

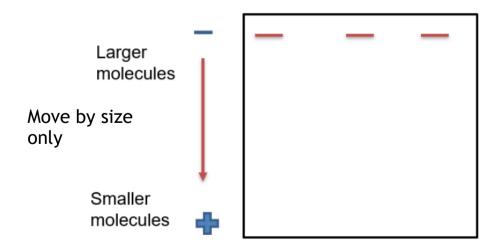
1.4 Separating techniques: Gel Electrophoresis


Gel Electrophoresis

Charged macromolecules move through an electric field applied to a gel matrix.

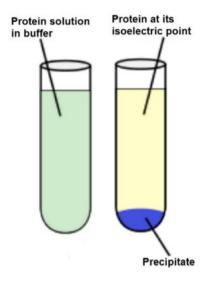
Native Gel Electrophoresis

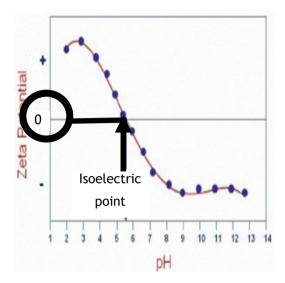
Separates proteins by their shape, size and charge


The proteins are not denatured in this technique.

SDS Page Electrophoresis

Separates proteins by size alone (smaller molecules travel further).

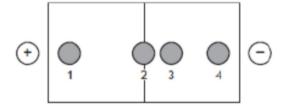

The proteins are denatured giving an equally negative charge



1.4 Separating techniques: Gel Electrophoresis

Iso electric Point

When there is no net charge on the protein and it will precipitate out of solution.



Isoelectric Focusing

Soluble proteins separated using their IEP in electrophoresis using an electric field and a pH gradient.

A protein stops migrating through the gel at its IEP in the **pH gradient because it has no net charge a**nd will **precipitate** out of solution.

Buffers required: creating a pH gradient in the gel matrix Holds the pH constant despite adding small quantities of acid or alkali.

1.5 Immunoassay

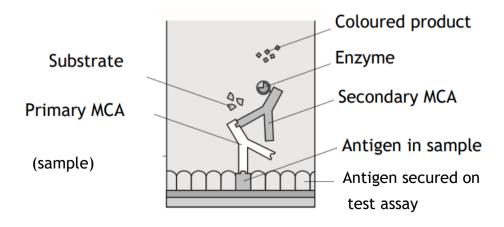
Immunoassay techniques

Used to detect and identify specific proteins using monoclonal antibodies

Monoclonal antibodies

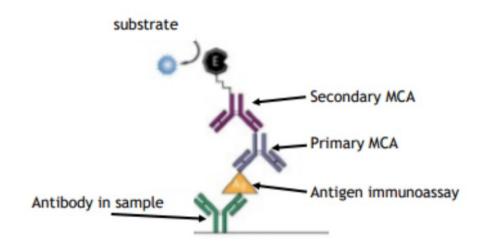
Stocks of antibodies with the same specificity to a particular antigen.

Types of chemical labels

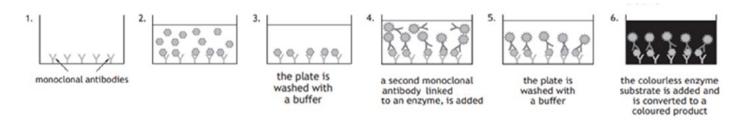

- 1. Reporter enzyme producing a colour change (ELISA technique)
- 2. Chemiluminescence Reporters
- 3. Fluorescence Reporters

Immunoassay e.g. ELISA

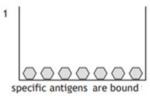
A MCA specific to the protein antigen is linked to a chemical 'label' to detect the presence/concentration of protein in the sample.

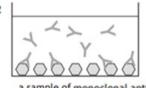

Used to detect the presence/concentration of antigen protein in a sample

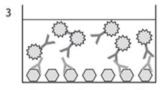
Sometimes more than one MCA is used with the secondary MCA containing the chemical label.



1.5 Immunoassay


In some immunoassays, a specific antigen is used to detect the presence of antibodies rather than MCA's detecting specific antigens.


Stages of ELISA-MCA on test assay

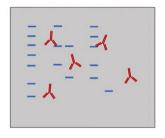

Stages of ELISA—Specific antigen on test assay

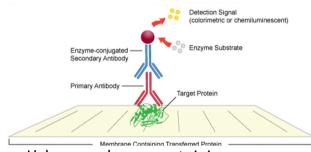
to the assay plate

a sample of monoclonal antibodies is added to the plate

the plate is washed with a buffer and a second monoclonal antibody, specific to all human antibodies and linked to an enzyme, is added

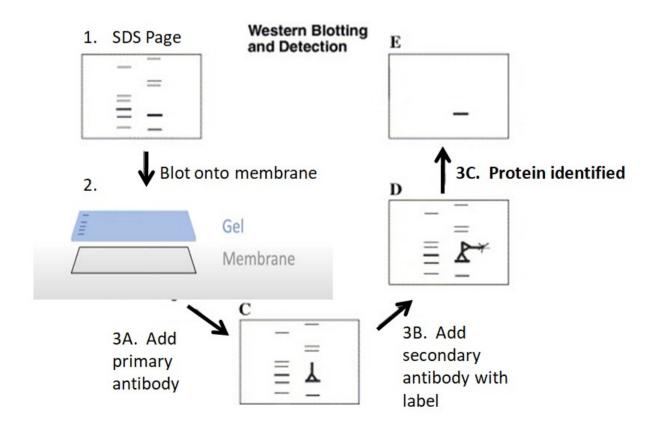
the plate is washed with a buffer and the substrate for the enzyme is added

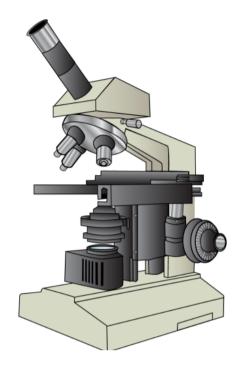

1.5 Western Blot


Allows a <u>single protein</u> to be identified from a <u>complex mix</u> using fluorescent labelled antibodies.

- 1. Separate a protein from a complex mix using SDS-PAGE electrophoresis
- 2. Probe for protein

The separated proteins from the gel are transferred (blotted) onto a solid medium


The proteins are identified using <u>specific antibodies</u> that have reporter enzymes attached.


Nylon membrane containing transferred protein

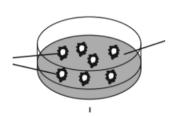
Stages of Western Blot

1.6 Microscopy

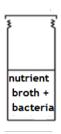
- Bright Field Microscopy
 Allows the following to be viewed:
 - (a) Whole organisms
 - (b) Parts of organisms
 - (c) Thin sections of dissected tissue
 - (d) Individual cells

2. Fluorescence Microscopy

Uses specific <u>fluorescent labels</u> to bind to and visualise certain molecules or structures <u>within cells/tissues.</u>


Visualise structures that are <u>much smaller</u> in size (higher resolution).

1.7 Microbiology


Types of Cell culture

A microbial culture can be started using an inoculum of microbial cells on:

1. Agar (solid media)

2. Broth (liquid media)

Nutrients in Cell Culture

Culture media contains suitable <u>nutrients</u> that promote the growth of <u>specific</u> cells/ microbes.

Example

Animal cells grown in media containing growth factors from serum.

Growth factors are proteins that promote cell growth and proliferation.

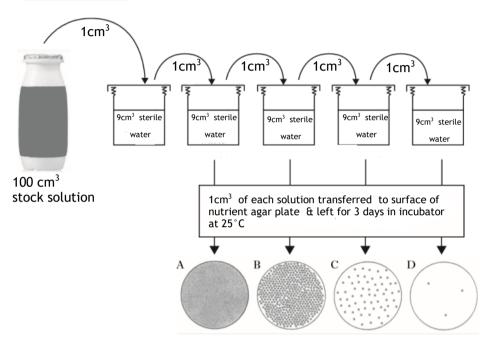
Aseptic technique

Involves the <u>sterilisation</u> of equipment/culture media by <u>heat or chemical</u> means when carrying out cell culture experiments.

Examples

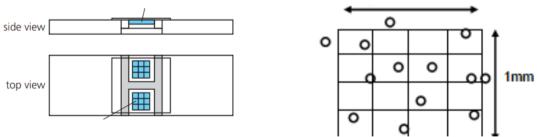
- 1. Wash hands & desk with chemical disinfectant.
- 2. Autoclave all glassware before use at high temperature/pressure
- 3. Work near the blue flame of a Bunsen burner (heat)
- 4. Flame the neck of all bottles/loop (heat)

Why are aseptic techniques necessary?


Eliminates unwanted microbial contaminants when culturing microorganisms /cells

1.7 Microbiology

1. Colony forming units (CFU)

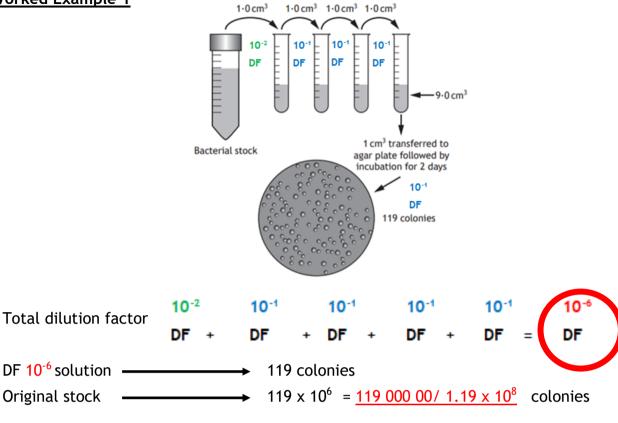

Plating out of a <u>liquid microbial culture</u> on solid media allows the number of CFU to be counted and the <u>density of cells</u> in the culture estimated.

<u>Serial dilution</u> is often needed to achieve a suitable colony count. (30-300 colonies)

2. Haemocytometers

Use of haemocytometer to estimate cell numbers per cm³ in a liquid broth culture

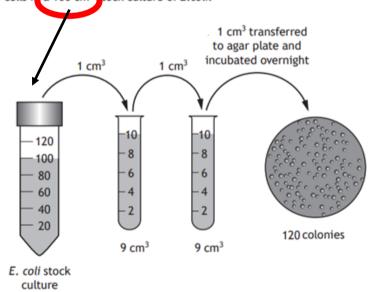
Step 1 Work out volume of liquid placed in haemocytometer slide in cm³.


Length x breadth x depth (remember if if mm divide by 10)

Step 2 Count number of cell colonies viewed in diagram (microscope).

Step 3 Proportion calculation to scale up per cm³.

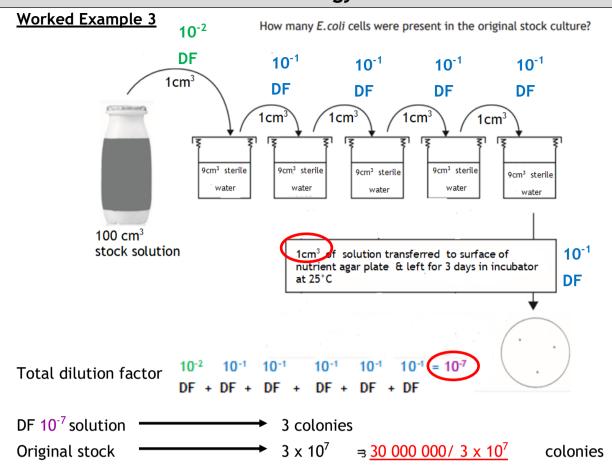
1.7 Microbiology CFU Calculation


Worked Example 1

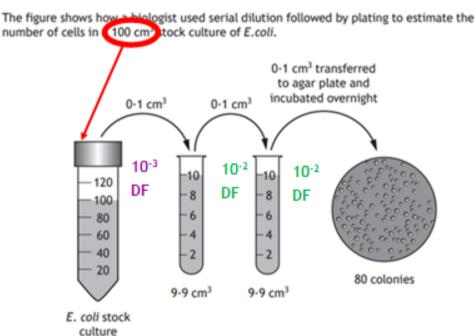
Worked Example 2

The figure shows how a biologist used serial dilution followed by plating to estimate the number of cells it a 100 cm tock culture of *E.coli*.

3



How many E.coli cells were present in the original stock culture?


Total dilution factor
$$10^{-2} + 10^{-1} + 10^{-1} = 10^{-4}$$

DF DF DF

DF 10^{-4} solution \longrightarrow 120 colonies \longrightarrow 120 x $10^2 = 1200 000 / 1.2 x <math>10^6$ colonies

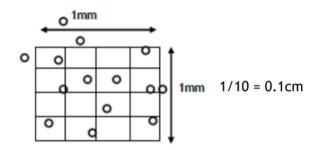
1.7 Microbiology CFU Calculations

Worked Example 4

How many E.coli cells were present in the original stock culture?

Total dilution factor $10^{-3} + 10^{-2} + 10^{-2} = 10^{-7}$

DF
$$10^{-7}$$
 solution \longrightarrow 80 colonies


Original stock \longrightarrow 80 x 10^7 = $80 000 000 / 8 x 10^7 colonies$

1.7 Microbiology Haemocytometer Calculations

Worked Example 1

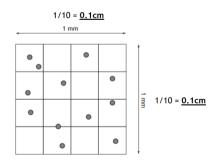
The diagram below represents red blood cells in a haemocytometer. The grid is <u>0.1mm</u> in depth. Calculate the number of red blood cells per cm³ of the liquid culture.

$$1/10 = 0.1$$
cm

A-

1. Work out Depth

$$L \times b \times h = 0.1 \times 0.1 \times 0.01 = 0.0001 \text{cm}^3$$


- 2.Count Cells
- 10 RBC's are on the inside of the haemocytometer grid.

3.Proportion
$$0.0001 \text{cm}^3 \longrightarrow 10 \text{ RBC}$$
 $1 \text{cm}^3 \quad 3 \longrightarrow 100,000 \text{ RBC}$

Worked Example 2

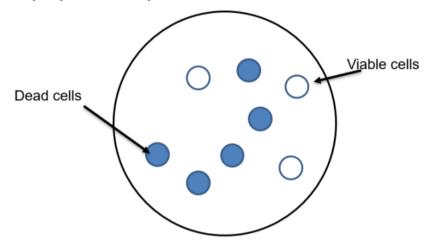
A haemocytometer can be used to estimate the number of bacterial cells in a liquid culture. The figure represents bacterial cells from a culture, placed in a haemocytometer that has a depth of <u>0.1 mm</u>,

Calculate the number of bacterial cells per cm3 in a liquid culture.

1. Work out volume

$$L \times b \times h = 0.1 \times 0.1 \times 0.01 = 0.0001 \text{cm}^3$$

- 2.Count Cells
- 12 bacterial cells are on the inside of the haemocytometer grid.


3. Proportion

1.7 Microbiology

Vital Staining of Cells

Measuring viable cell count.

Use of stains such as trypan/methylene blue that <u>only stain dead cells</u> as viable cells remove blue dye by active transport.

