
Measurement of metabolic rate

1. Oxygen consumption (apparatus—respirometer OR O₂ probe)

Carbon dioxide production (apparatus-CO₂ probe)
Heat production (apparatus Calorimeter)

Respirometer

Used to measure <u>oxygen consumption</u> as an indirect measurement of the dependent variable of respiration rate/metabolic rate.

VALID results

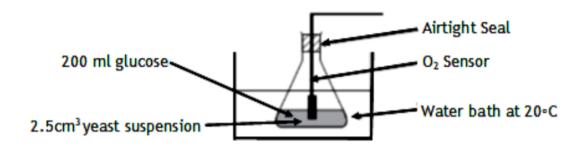
Variables kept constant for

- 1. Diameter of tubing
- 2. Volume of solution to absorb CO₂

The solution at the bottom of the test tube is critical to the success of the experiment as the animal uses up O_2 and the CO_2 is absorbed by the solution. This causes liquid to be forced up the tubing to replace the volume of gas lost to the solution.

Time (minutes)	Distance dye moved up tube (cm³ per minute)	Metabolic Rate
0	0.0	
2	0.15	†
4	0.20	
6	0.25	
8	0.30	
10	0.35	

Conclusion


As time increases, metabolic rate increases.

Hint: Remember the further the distance travelled = higher metabolic rate

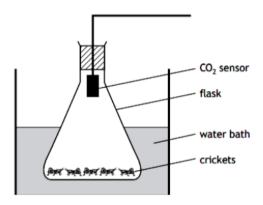
Oxygen/Carbon Dioxide Probes

Another piece of apparatus to measure dependant variable is metabolic rate indirectly is oxygen probes/sensors.

This measure O_2 consumption in a sealed container.

Time (minutes)	Oxygen Concentration in airtight flask (mg per litre)	Metabolic Rate
0	10.8	+
2	8.5	j
4	6.2	j
6	4.1]
8	2.8	j 1
10	0.0	

Conclusion


As time increases, metabolic rate increases

Hint

Remember \underline{lower} oxygen concentration = \underline{higher} metabolic rate

Oxygen/Carbon Dioxide Probes

Another piece of apparatus to measure dependant variable of metabolic rate indirectly is CO_2 probes/ sensors which measures CO_2 production in a sealed container.

Time (minutes)	CO ₂ Concentration in airtight flask (mg per litre)	Metabolic Rate
0	0.0	
2	2.8	
4	4.1	
6	6.9	
8	7.3	
10	10.1	

Conclusion

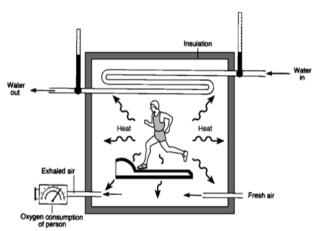
As time increases, metabolic rate increases.

Hint Remember higher CO₂ concentration = higher metabolic rate

Calorimeter

Apparatus used to measure the dependent variable of metabolic rate indirectly via **heat production by** a **subject** in a sealed container.

Measurements


- 1. Measure temperature of water at start of experiment by probe/thermometer.
- 2. Measure temperature of water at end of experiment by probe/thermometer.

Metabolic rate measured indirectly from heat produced by subject via a specific formula.

Features of calorimeters

To maximize absorption of heat produced by subject into water pipe.

- 1. Copper tube coiled to increase surface area .
- 2. Insulated container to keep heat in/prevent heat loss to surroundings.

Time (minutes)	Heat released (°C per minute)	Metabolic Rate
0	0.0	
2	2.8	†
4	4.1	
6	6.9	
8	7.3	
10	10.1	

Conclusion

As time increases, metabolic rate increases

Hint: Remember the more heat produced = the higher the metabolic rate

Metabolic Rate Calculations

Metabolic Rate Calculations

As organisms all have **DIFFERENT** starting masses , when calculating different animal's metabolic rate it is important to divide by their weight.

Four athletes were weighed then given a fitness test during which their maximum oxygen uptake and body mass was measured.

Maximum oxygen uptake per kg of body mass can be used as a measure of fitness.

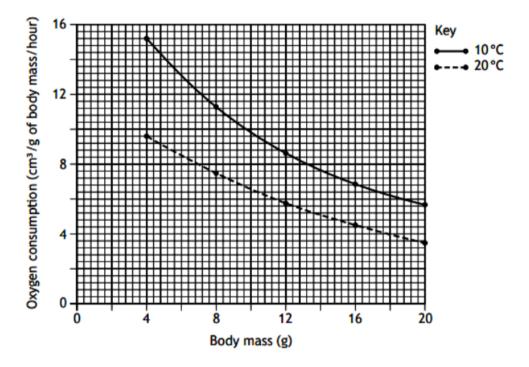
The fitter an individual, the higher their maximum oxygen uptake,

Athlete	Body mass (kg)	Maximum oxygen uptake (litres per minute)
A	60	3.6
В	55	3.6
С	60	3.7
D	55	3.7

To calculate the fitness level of Athlete C's the individual's maximum oxygen uptake is divided by the body mass.

3.7 litres per minute ÷ 60kg = 0.062 litres/minute/kg

Metabolic Rate Calculations


Metabolic Rate Calculations

Graphs and tables display metabolic rate per gram of body mass per hour.

Therefore when given information about an organism's metabolic rate, calculations will involve **MULTIPLYING** by body mass and OR hours.

Calculation One Example

The graph shows the relationship between body mass and oxygen consumption of different masses of shrews at two environmental temperatures.

The metabolic rate of the shrew at 10° C at 4g of body mass is 15.2 cm³/g of body mass/hour.

To calculate the TOTAL metabolic rate of the 4g shrew over 1 day is

 $15.2 \times 4g \times 24 = 1459.20 \text{ cm}^3/g \text{ of body mass/hour}$