Indicators and Buffers

Indicators

- Indicators are used to determine the end point in an acid-alkali titration
- Indicators are dyes with pH-sensitive colours
- Indicators are usually weak acids

$$HIn(aq) + H_2O(l) = H_3O^*(aq) + In^*(aq)$$

acid base conjugate acid conjugate base

- The unionised weak acid HIn has a distinctly different colour from the conjugate base In.
- The equilibrium constant for indicators is

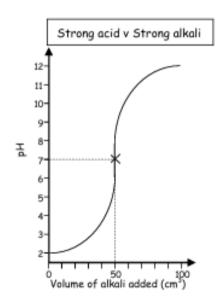
$$K_{\text{In}} = \frac{[H_3O^*] \times [\text{In}^-]}{[\text{HIn}]}$$

$$\frac{[\text{In}^-]}{[\text{HIn}]} = \frac{K_{\text{In}}}{[H_3O^*]}$$

 The colour of the indicator is determined by the ratio of [HIn] to [In-]

i.e. the relative concentrations of the two coloured forms.

- Both [HIn] and [In⁻] depend on [H₃O⁺] i.e. the pH
- Theoretical colour change takes place when [HIn] = [In⁻]

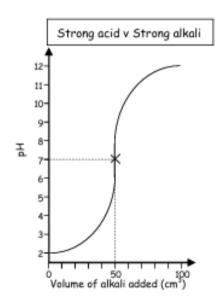

- In practice, colour change in only visibly distinguishable when [HIn] and [In-] differ by a factor of 10
 - pH range over which a colour change can be seen can be estimated by the equation: pH = pK_{In} * 1

- When choosing an indicator for a titration, the colour change of the indicator (which happens over a very particular pH range) should happen when the pH of the overall titration is changing rapidly.
 - The indicator must change colour with an addition of, roughly,
 ½drop of reagent if the titration is to have a reliable end-point.

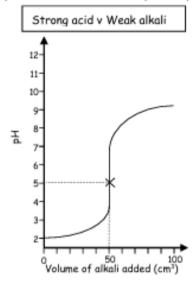
For Example: Strong Acid v Strong Alkali Titration

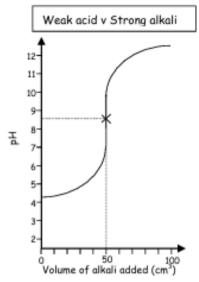
0.01 mol l⁻¹ NaOH titration against 50cm³ 0.01 mol l⁻¹ HCl.

- pH of original 50cm³ HCl = 2 (from 0.01 mol l⁻¹ HCl)
- When 49cm³ of NaOH has been added, only 1cm³ HCl remains
 - Total volume is 99cm³ (~100cm³)
 - o 1cm3 HCl in 100cm3 volume is a 1/100 dilution
 - [HCl] is now 0.0001 mol l⁻¹
 - o pH = 4
- When 49.9cm³ of NaOH has been added, only 0.1cm³ HCl remains
 - Total volume is 99.9cm³ (~100cm³)
 - o 0.1cm3 HCl in 100cm3 volume is a 1/1000 dilution
 - [HCl] is now 0.00001 mol l⁻¹
 - o pH = 5
- When 49.99cm³ of NaOH has been added, only 0.01cm³ HCl remains
 - o pH = 6
- When 50cm³ of NaOH has been added, no HCl remains
 - o pH = 7
- NB. The rapid rise in pH as the endpoint of the titration is approaching
 - Adding additional NaOH beyond neutralisation endpoint achieves a similar shape of curve.



- When choosing an indicator for a titration, the colour change of the indicator (which happens over a very particular pH range) should happen when the pH of the overall titration is changing rapidly.
 - The indicator must change colour with an addition of, roughly,
 ½drop of reagent if the titration is to have a reliable end-point.


For Example: Strong Acid v Strong Alkali Titration


0.01 mol l⁻¹ NaOH titration against 50cm³ 0.01 mol l⁻¹ HCl.

- pH of original 50cm³ HCl = 2 (from 0.01 mol l⁻¹ HCl)
- When 49cm³ of NaOH has been added, only 1cm³ HCl remains
 - Total volume is 99cm³ (~100cm³)
 - o 1cm3 HCl in 100cm3 volume is a 1/100 dilution
 - [HCl] is now 0.0001 mol l⁻¹
 - o pH = 4
- When 49.9cm³ of NaOH has been added, only 0.1cm³ HCl remains
 - Total volume is 99.9cm³ (~100cm³)
 - o 0.1cm3 HCl in 100cm3 volume is a 1/1000 dilution
 - [HCl] is now 0.00001 mol l⁻¹
 - o pH = 5
- When 49.99cm³ of NaOH has been added, only 0.01cm³ HCl remains
 - o pH = 6
- When 50cm³ of NaOH has been added, no HCl remains
 - o pH = 7
- NB. The rapid rise in pH as the endpoint of the titration is approaching
 - Adding additional NaOH beyond neutralisation endpoint achieves a similar shape of curve.

 Titration using a combination of weak and strong acids & alkalis produces similarly shaped curves:

- There is a region of rapid pH change in each of the three curves
 - When choosing an indicator, the indicator should have a colour change pH range which occurs when the pH of the titration is rapid rising.

Indicator	pH Range of Colour Change	Colour (HIn)	Colour (In-)
Methyl Orange	3.0 - 4.4	Orange	Yellow
Methyl Red	4.2 - 6.3	Red	Yellow
Bromothymol Blue	6.0 - 7.6	Yellow	Blue
Phenolphthalein	8.0 - 9.8	Colourless	red

 It is not possible to select an indicator for weak acid v weak alkali titrations. The titration curve generated from this titration does not produce an upward area of rapidly increasing pH at the endpoint.

Questions

- 1. Calculate the pKa and Ka for
 - a) Methyl orange
 - b) Methyl red
 - c) Bromothymol Blue
 - d) Phenolphthalein

Buffers

- A Buffer solution is a solution where the pH of the solution remains approximately constant when
 - small amounts of acids or alkalis are added
 - the solution is diluted with water

Acidic Buffers

- · Acidic buffers contain
 - A solution of a weak acid

$$HA(aq) + H_2O(l)$$
 equilibrium $H_3O^+(aq) + A^-(aq)$ Equilibrium lies well to LEFT

One of the salts of that weak acid

$$NaA(aq)$$
 $fully ionises$ $Na^*(aq)$ + $A^-(aq)$

- Large [A⁻] from ionisation of NaA
 - Equilibrium shifts to LEFT, increasing [HA]
- Addition of H⁺ ions/acid
 - As [A⁻] >> [H⁺], buffer has ability to remove large quantity of H⁺ ions
 - → H⁺ + A⁻ ions re-associate forming HA molecules.
- Addition of OH⁻ ions/alkali
 - ➤ OH⁻ ions decrease [H⁺] by neutralisation reaction
 - Equilibrium shifts to RIGHT to replace H⁺ ions
 - ➤ HA molecules dissociate to produce H⁺ ions and A⁻ ions

•

Calculation of the pH of a Buffer

• To calculate the pH of a buffer, the following equation can be used:

$$K_{\alpha} = \frac{[H_3O^*] \times [A^-]}{[HA]}$$

$$[H_3O^*] = \frac{K_a \times [HA]}{[A^-]}$$

$$[H_3O^*] = \frac{K_a \times [Acid]}{[Salt]}$$

pH = pK_a -
$$log_{10} \frac{[Acid]}{[Salt]}$$

where

[HA] = concentration of weak acid (little dissociation of HA to A⁻)

[A⁻] = concentration of fully ionised salt (little A⁻ from dissociation of acid)

- If the buffer has water added, both [salt] and [acid] are equally diluted and this has no effect on the ratio of [acid] to [salt]
 - [H₃O*] is unaffected
 - o pH is unaffected
- good buffers must have reasonable reserves of A⁻ and HA
 - adding H⁺ ions removes A⁻
 - adding OH⁻ dissociates HA → H⁺ + A⁻
 - if buffer has [salt] = [acid], then buffer has equal ability in resisting pH change by the addition of H⁺ or OH⁻.

Questions

- Calculate the pH of the buffer solution made from 1.0 mol l⁻¹
 methanoic acid and 1.78 mol l⁻¹ sodium methanoate solution. The pK₂
 of methanoic acid is 3.8.
- 2. Calculate the pH of the buffer solution made from 0.1 mol l^{-1} solutions of ethanoic acid and potassium ethanoate. The pK_a of ethanoic acid is 4.8.

 The composition of an acid buffer can be calculated from the same equation

e.g. Calculate the concentration ratio of [acid]:[salt] for a propanoic acid buffer with pH=5. The p K_a of propanoic acid = 4.9

pH = pK_a - log₁₀
$$\frac{[Acid]}{[Salt]}$$

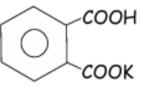
5.0 = 4.9 - log₁₀ $\frac{[Acid]}{[Salt]}$
log₁₀ $\frac{[Acid]}{[Salt]}$ = - 0.1
 $\frac{[Acid]}{[Salt]}$ = 0.794

Answer: Dissolve 0.794 moles of propanoic acid and 1 mole of sodium propanoate in 1 litre of water (or similar proportionate amounts)

Questions

- Calculate the concentrations of acid and salt solutions required to make:
 - a) a buffer of pH=6.0, made with carbonic acid (p K_a = 6.4) and sodium hydrogencarbonate
 - b) a buffer of pH=3.1, made from chloroethanoic acid (pK_a =2.9) and its potassium salt.

Examples of Buffers


Buffers are important chemical systems in chemistry and in biological systems:

- enzymes work in narrow pH environments
 - amylase in saliva and the small intestine require a slightly alkaline pH to function with optimum activity
- Blood is buffered at pH=7.4
 - CO₂/bicarbonate equilibrium (bicarbonate = hydrogencarbonate)
 - Excess CO₂ removed by exhalation in lungs
 - o Excess bicarbonate removed by excretion in urine
- · The sea is buffered to a particular pH
 - Marine life required stable pH for survival
 - Sea water contains significant concentration of carbonate and bicarbonate ions

- Phosphate solutions act as buffers
 - 2nd and 3rd dissociations of H₃PO₄ are weak

$$0 \qquad H_3PO_4 \longrightarrow H^+ + H_2PO_4^-$$

- A useful all-in-one buffer is potassium hydrogenphthalate
 - The weak acid and its salt are in the same molecule

