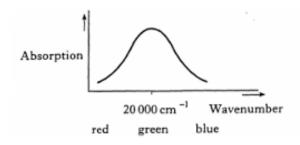

AH Exercise 1.3d

Colour

2001 AH MC2 (88%)

- 2. The colour which would be observed is
 - A blue
 - B green
 - C purple
 - D yellow.


2003 AH MC2 (80%)

- 2. An aqueous solution of potassium permanganate is coloured purple. In which region of the visible spectrum is it absorbing?
 - A Red
 - B Orange
 - C Green
 - D Violet

2015 revAH MC9 (62%)

- 9. Which of the following solids would form a colourless aqueous solution?
 - A ZnSO₄.7H₂O
 - B NiSO₄.6H₂O
 - C K2CrO4
 - D CoCl₂

2001 AH MC3 (65%)

- 3. The colour is caused by
 - A electrons absorbing energy to jump from one d orbital to another d orbital
 - B excited electrons dropping to the ground state
 - C electrons absorbing energy to jump from the first to the second shell
 - D electrons absorbing energy to jump from the second to the third shell.

2004 AH MC9 (54%) and 2011 AH MC10 (52%)

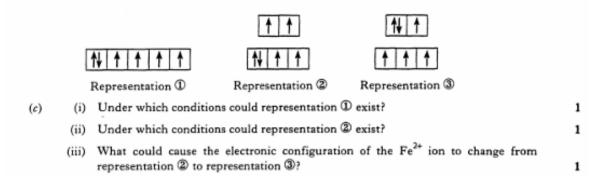
- 9. Which of the following ions is least likely to be coloured?
 - A Ti(H2O)63+
 - B Cr(NH₃)₆3+
 - C Ni(H2O)62*
 - D Zn(NH₃)₄²⁺

2011 AH MC2 (81%)

- In colorimetry, as the concentration of a coloured solution decreases
 - A the absorbance increases
 - B the absorbance decreases
 - C the radiation wavelength increases
 - D the radiation wavelength decreases.

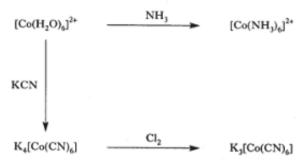
2014 revAH MC4 (92%)

- The colour of a highly concentrated ionic solution which absorbs light only in the ultraviolet region of the electromagnetic spectrum is
 - A red
 - B black
 - C violet
 - D colourless.


2012 AH MC4 (37%)

- In absorption spectroscopy, as the concentration of an ionic solution decreases, the radiation transmitted
 - A increases in intensity
 - B decreases in intensity
 - C increases in wavelength
 - D decreases in wavelength.

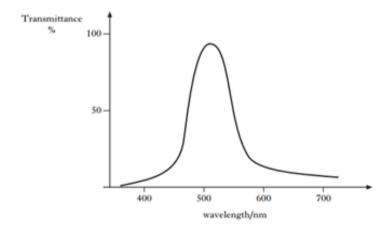
2014 AH MC4 (76%) and 2014 revAH MC7 (82%)


- In absorption spectroscopy, as the concentration of an ion in solution increases, there is an increase in the
 - A wavelength of radiation absorbed
 - B frequency of radiation absorbed
 - C intensity of radiation absorbed
 - D intensity of radiation transmitted.

Under certain conditions the 3d electrons in the Fe²⁺ ion can be represented as

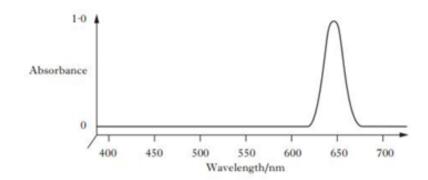
2004 AH L5d

5. Consider the following reactions.



(d) There is a colour change when NH₃ is added to [Co(H₂O)₆]²⁺.
Why does this change of ligand result in different wavelengths of light being absorbed?

1


2008 AH L2a

 An aqueous solution of the compound [CoCl₂(NH₃)₄]Cl gave the following transmittance spectrum.

(a) From the above spectrum, deduce the colour of the solution.

5.

The absorption spectrum of a solution of sodium tetrachlorocobaltate(II) is shown above.

(a) Predict the most likely colour of the solution.

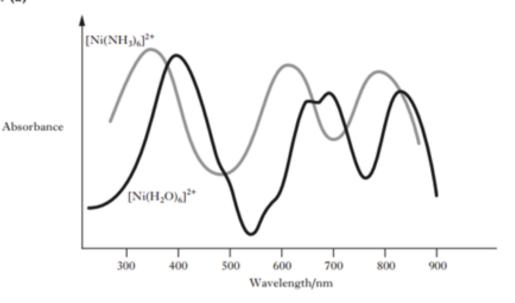
1

2014 AH L4

- A chromium compound is known to exist in the following three isomeric forms. The co-ordination number of chromium is the same in each isomer.
 - A [Cr(H₂O)₆]³⁺(Cl⁻)₁
 - B [Cr(H₂O)₅Cl]²⁺(Cl⁻)₂.H₂O
 - C [Cr(H₂O)₄Cl₂]*(Cl^{*}).2H₂O
 - (c) All three forms have different colours in solution.
 - (i) Explain how colour arises in transition metal compounds such as those above.
- 2

(ii) Suggest why the three solutions have different colours.

1


2013 revAH L5d

Nickel(II) ions react quantitatively with dimethylglyoxime (C₄H₈O₂N₂) forming a complex which
precipitates out as a red solid. The equation for the reaction and the structure of the complex are
shown below.

$${\rm Ni}^{2+} + 2{\rm C}_4{\rm H}_8{\rm O}_2{\rm N}_2 \rightarrow {\rm Ni}({\rm C}_4{\rm H}_7{\rm O}_2{\rm N}_2)_2 + 2{\rm H}^+$$

Relative formula mass = 288.7

5. (d)

- (i) Why is [Ni(H2O)6]2+(ClT)2(aq) likely to be green?
- (ii) Explain why the peaks in the absorption spectrum of [Ni(NH₃)₆]²⁺ are at shorter wavelengths.
- (iii) Predict the colour of [Ni(NH₃)₆]²⁺(Cl^{**})₂(aq).

1

2